The temperature at which the Celsius and Fahrenheit thermometers agree (to give the same numerical value) is:
1. \(-40^\circ\)
2. \(40^\circ\)
3. \(0^\circ\)
4. \(50^\circ\)
On a new scale of temperature, which is linear and called the \(\mathrm{W}\) scale, the freezing and boiling points of water are \(39^\circ ~\mathrm{W}\)and \(239^\circ ~\mathrm{W}\) respectively. What will be the temperature on the new scale corresponding to a temperature of \(39^\circ ~\mathrm{C}\) on the Celsius scale?
1. \(78^\circ ~\mathrm{C}\)
2. \(117^\circ ~\mathrm{W}\)
3. \(200^\circ ~\mathrm{W}\)
4. \(139^\circ ~\mathrm{W}\)
1. | \(-415.44^\circ ~\text{F} ,-69.88^\circ ~\text{F}\) |
2. | \(-248.58^\circ ~\text{F} ,-56.60^\circ~ \text{F}\) |
3. | \(315.44^\circ ~\text{F} ,-69.88^\circ ~\text{F}\) |
4. | \(415.44^\circ ~\text{F} ,-79.88^\circ~ \text{F}\) |
The ice-point reading on a thermometer scale is found to be \(20^\circ,\) while the steam point is found to be \(70^\circ.\) When this thermometer reads \(100^\circ ,\) the actual temperature is:
1. \(80^\circ~\mathrm{C}\)
2. \(130^\circ~\mathrm{C}\)
3. \(160^\circ~\mathrm{C}\)
4. \(200^\circ~\mathrm{C}\)