Question 5.16:

Two masses 8 kg and 12 kg are connected at the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses and the tension in the string when the masses are released.


The given system of two masses and a pulley can be represented as shown in the following figure:

                    

Smaller mass, m1 = 8 kg

Larger mass, m2= 12 kg

Tension in the string = T

Mass m2, owing to its weight, moves downward with acceleration a, and mass m1 moves upward.

Applying Newton’s second law of motion to the system of each mass:

For massm1  : The equation of motion can be written as:

T – m1g = ma     …………… (i)

For mass m2: The equation of motion can be written as:

m2g-T=m2a   ...........ii

Adding equations (i) and (ii), we get:

m2 - m1g = m1 + m2a
a = m2 = m1m1 +m2g
= 12 - 812 + 8 × 10 = 2 m/s2

Therefore, the acceleration of the masses is 2 m/s2.

Substituting the value of a in equation (ii), we get:

m2g - T = m2m2 - m1m1 + m2g
T = m2 - m22 - m1m2m1 + m2g
= 2m1m2m1 + m2g
= 2 × 12 × 812 + 8 × 10
= 2 × 12 × 820 × 10 = 96 N

Therefore, the tension in the string is 96 N.