Q.25 (1) A steel wire of mass μ per unit length with a circular cross-section has a radius of 0.1 cm. The wire is of length 10 m when measured lying horizontal, and hangs from a hook on the wall. A mass of 25 kg is hung from the free end of the wire. Assuming, the wire to be uniform and lateral strains << longitudinal strains, find the extension in the length of the wire. The density of steel is 7860 kg m-3. (Young's modulus, Y = 2 x 1011 Nm-2.

(2) If the yield strength of steel is 2.5 x 10Nm-2, what is the maximum weight that can be hung at the lower end of the wire?

Hint: Use the concept of Young's modulus to find the change in the length of the wire.
Consider the diagram. A small element of length dx is considered at x from the load (x=0).
Step 1: Find the tension in the wire.
(a) Let T(x) and T(x+dx) are tensions on the two cross-sections at distance dx apart, then
 
T (x+dx) - T(x) = dmg = μdxg                        (where μ is the mass/length). ( dm = μdx)
 
                                dTμdxg                                [ dT = T(x+dx) - T(x)]
 
                            T(x) = μgx + C                            (on integrating)
 
At x = 0, T(0) = Mg     C = Mg
Step 2: Find the change in length of the wire.
 
Let the length dx at x increases by dr, then,
Young's modulus  Y= Stress  Strain 
 
                 T(x)/Adr/dx=Y
 
  drdx=1YAT(x)
 
r=1YA0L(μgx+Mg)dx      =1YAμgx22+Mgx0L     =1YAmgL2+MgL
                                              (m is the mass of the wire)
 
A=π×10-32 m2
Y=200×109Nm-2
m=π×10-32×10×7860 kg
 
r=12×1011×π×10-6  π×786×10-3×10×102+25×10×10
=196.5×10-6+3.98×10-3=4×10-3 m
Step 3: Find the maximum tension in the wire.
 
(b) Clearly tension will be maximum at x=L 
 
  T=μgL+Mg=(m+M)g                 [ m =μg]
The yield force = (Yield strength Y x area = 250 x 106 xπ x (10-3)= 250 x π N
At yield point, T = Yield force
     (m+M)g=250×π
                   m=π×10-32×10×7860<<M
              Mg=250×π
Hence,   M=250×π10=25×π=75 kg.