Q.27. An equilateral triangle ABC is formed by two Cu rods AB and BC and one Al rod. It is heated in such a way that the temperature of each rod increases by ΔTΔT. Find the change in the angle ABC. [coeffecient of linear expansion for Cu is α1α1, coefficient of linear expansion for Al is α2α2]

 
Hint: The change in temperature produces strain in the rods.
Step 1: Find a relation between the lengths of the rods and the angle of the triangle.
Consider the diagram shown.

Let l1=AB, l2=AC, l3=BCl1=AB, l2=AC, l3=BC
          cosθ=l23+l21-l222l3l1  cosθ=l23+l21l222l3l1                            (assume ABC=θABC=θ)
 
   2l3l1cosθ=l23+l21-l22   2l3l1cosθ=l23+l21l22
Step 2: Differentiate on both sides.
 
Differentiating, 2(l3dl1+l1dl3)cosθ-2l1l3sinθdθ2(l3dl1+l1dl3)cosθ2l1l3sinθdθ
                                       =2l3dl1+2l1dl1-2l2dl2=2l3dl1+2l1dl12l2dl2
Now, dl1=l1α1Δtdl1=l1α1Δt           (where ΔΔt = change in temperature)
and  l1=l2=l3=ll1=l2=l3=l
 
(l2α1Δt+l2α1Δt)cosθ+l2sinθdθ=l2α1Δt+l2α1Δt-l2α2Δt(l2α1Δt+l2α1Δt)cosθ+l2sinθdθ=l2α1Δt+l2α1Δtl2α2Δt
 
sinθdθ=2α1Δt(1-cosθ)-α2Δt
Putting, θ=60°                                      (for equilateral triangle) 
 
dθ×sin60°=2α1Δt(1-cos60°)-α2Δt
                   =2α1Δt×12-α2Δt=(α1-α2)Δt
Step 3: Find the change in angle.
       dθ= change in the angle ABC
 
               =(α1-α2)ΔTsin60°=2(α1-α2)ΔT3  (Δt=ΔT given)