Q. 22 Surface tension is exhibited by liquids due to the force of attraction between molecules of the liquid. The surface tension decreases with an increase in temperature and vanishes at boiling point. Given that the latent heat of vaporisation for water Lv=540 k cal kg-1, the mechanical equivalent of heat, J=4.2 J cal-1, density of water, ρw=103 kg l-1, Avogadro's number, NA=6.0×1026 k mole-1 and the molecular weight of water, MA = 10 kg for 1 k mole.

(a) Estimate the energy required for one molecule of water to evaporate.

(b) Show that the inter-molecular distance for water is d=MANA×1ρw1/3 and find its value.

(c) 1g of water in the vapour state at 1 atm occupies 1601 cm3. Estimate the inter-molecular distance at boiling point in the vapour state.

(d) During vaporisation, a molecule overcomes a force F, assumed constant, to go from an inter-molecular distance d to d’. Estimate the value of F.

(e) Calculate F/d which is a measure of the surface tension.

Hint: Use the unitary method to find the energy required to evaporate a molecule of water.
Step 1: Find the energy required to evaporate a molecule of water.
(a) Given,
Lv=540 kcal kg-1   =540×103 cal kg-1=540×103×4.2 J kg-1
The energy required to evaporate 1 kg of water = Lv kcal
 The energy required to evaporate MA kg of water = MALV kcal                     [Q=mL]
Since there are NA molecules in MA kg of water, the energy required for a molecule to evaporate:
       U=MALVNA J    [where NA=6×1026=Avogadro number]
          =18×540×4.2×1036×1026 J=90×18×4.2×10-23 J= 68×10-20 J
Step 2: Find the inter-molecular distance for water.
(b) Let the water molecules be points and are separated at distance d from each other. The volume of NA molecules of water = MAρw                         V=Mρ
Thus, the volume around one molecule = MANAρw
The volume around one molecule,
d3=(MA/NAρw) d=MANAρw1/3=186×1026×1031/3=30×10-3013 m  3.1×10-10 m
Step 3: Find the inter-molecular distance at boiling point in the vapour state.
(c) 1 kg of vapour occupies volume = 1601 ×10-3m3
     18 kg of vapour occupies volume = 18×1601×10-3m3
6×1026molecules occupy volume = 18×1601×10-3m3
1 molecule occupies volume = 18×1601×10-36×1026m3
lf d1 is the inter-molecular distance, then,
                                                   d13=(3×1601×10-29)m3
                    d1=(30×1601)1/3×10-10m
                           =36.3×10-10m
Step 4: Find the force F that is to be overcome by the molecules to eveporate.
(d) Work done to change the distance from d to d1 is =F(d1-d)
    This work done is equal to the energy required to evaporate 1 molecule.
                   F(d1-d)=6.8×10-20
or                 F=6.8×10-20d1-d
  =6.8×10-20(36.3×10-10-3.1×10-10)
 =2.05×10-11 N
Step 5: Find the surface tension.
(e) Surface tension=Fd=2.05×10-113.1×10-10=6.6×10-2 N/m