4.19. An electron emitted by a heated cathode and accelerated through a potential difference of 2.0 kV, enters a region with uniform magnetic field of 0.15 T. Determine the trajectory of the electron if the field (a) is transverse to its initial velocity, (b) makes an angle of 30°C with the initial velocity.

Magnetic field strength, B=0.15 T
Charge on the electron, e=1.6×10-19 C
Mass of the electron, m=9.1×10-31kg
Potential difference, V=2.0 kV=2×103 V
Thus, kinetic energy of the electron=eV
eV=12mv2
v=2eVm ...........(i)
Where, v=velocity of the electron
(a) Magnetic force on the electron provides the required centripetal force of the electron.
Hence, the electron traces a circular path or radius r.
Magnetic force on the electron is given by the relation, Bev 
Centripetal force mv2r
Bev=mv2r
r=mvBe ..........(ii)
From equation (i) and (ii), we get
r=mBe[2eVm]12
=9.1×10-310.15×1.6×10-19×(2×1.6×10-19×2×1039.1×10-31)12
=100.55×10-5
=1.01×10-3 m
=1 mm
Hence, the electron has a circular trajectory of radius of 1.0 mm normal to the magnetic field.
(b) When the field makes an angle θ of 30° with initial velocity, the initial velocity will be, v1=vsinθ
From equation (ii), we can write the expression for new radius as:
r1=mv1Be
=mvsinθBe
=9.1×10-310.15×1.6×10-19×[2×1.6×10-19×2×1039×10-31]12×sin 30°
=0.5×10-3 m
=0.5 mm
Hence, the electron has a helical projectory of radius 0.5 mm along the magnetic field direction.