A square of side \(L\) meters lies in the \(XY\text-\)plane in a region where the magnetic field is given by \(\vec{B}=B_{0}\left ( 2\hat{i} +3\hat{j}+4\hat{k}\right )\text{T}\) where \(B_{0}\) is constant. The magnitude of flux passing through the square will be:
1. \(2 B_{0} L^{2}~\text{Wb}\)
2. \(3 B_{0} L^{2}~\text{Wb}\)
3. \(4 B_{0} L^{2}~\text{Wb}\)
4. \(\sqrt{29} B_{0} L^{2}~\text{Wb}\)

(c) Hint: ϕ=B.A
Step 1: Find the flux.
Here,
A=L2k^ and B=B02i^+3j^+k^T
ϕ=B.A=B02i^+3j^+4k^.L2k^=4B0L2 Wb