Consider the L-C-R circuit shown in the figure. Find the net current i and the phase of i. Show that i=VZ. Find the impedance Z for this circuit.

                                       

Hint: The net current will be equal to the sum of currents flowing in the two branches.
Step 1: In the given figure i is the total current from the source. It is divided into two parts i2 through R and i1 through series combination of C and L.
So, we can write; i=i1+i2
As,       Vmsinωt=Ri1              from the circuit diagram
                        i1=VmsinωtR                ...i
Step 2: If q2 is the charge on the capacitor at any time t, then for a series combination of C and L, applying KVL in the lower Circuit as shown;
q2C+Ldi2dt-Vmsinωt=0
  q2C+Ld2q2dt2=Vmsin ωt                  i2=dq2dt...ii
Let,                q2=qm sinωt+ϕ
                dq2dt=qmω cosωt+ϕ
             d2q2dt2=-qmω2 sin ωt+ϕ
Step 3: Now putting these values in Eq. (ii), we get;
qm1C+L-ω2sin ωt+ϕ=Vmsinωt
If ϕ=0 and 1C-Lω2>0,
then             qm=Vm1C-Lω2                           ...iv
From Eq. (iii),         i2=dq2dt=ωqm cosωt+ϕ
Using Eq. iv,        i2=ωVmcosωt+ϕ1C-Lω2
Taking ϕ=0; i2=Vmcosωt1ωC-Lω                  ...v 
Step 4: From Eqs. (i) and (v), we find that i1 and i2 are out of phase by π2.
Now,     i1+i2=VmsinωtR+Vm cos ωt1ωC-Lω
Put        VmR=A=C cos ϕ and Vm1ωC-Lω=B=C sin ϕ
               i1+i2=C cos ϕ sin ωt+C sin ϕ cos ωt
                             = C sin ωt+ϕ
where             C=A2+B2
and                 ϕ=tan-1BA
and                 ϕ=tan-1R1ωC-Lω
Hence,        i=i2+i2=Vm2R2+Vm21ωC-Lω21/2sinωt+ϕ
or                   iVm=1Z=Vm2R2+Vm21ωC-Lω21/2sinωt+ϕ
This is the expression for impedance Z of the circuit.