A linearly polarised electromagnetic wave given as E=E0 i^ cos (kz-ωt) is incident normally on a perfectly reflecting infinite wall at z = a. Assuming that the material of the wall is optically inactive, the reflected wave will be given as:

1. Er=-E0i^cos(kz-ωt)

2. Er=E0i^cos(kz+ωt)

3. Er=-E0i^cos(kz+ωt)

4. Er=E0i^sin(kz-ωt)

(b) Hint: When a wave is reflected from a denser medium, then the type of wave doesn't change but only its phase changes by 180° or π radian.
Step 1: For the reflected wave, z=-z, i^=-i^ and the additional phase of π in the incident wave.
Given, here the incident electromagnetic wave is,
E=E0 i^ cos (kz-ωt)
Step 2: The reflected electromagnetic wave is given by,
Er=E0(-i^)cos[k(-z)-ωt+π]
  =-E0i^cos[-(kz+ωt)+π]
  =Eoi^cos[-(kz+ωt)=E0i^cos(kz+ωt)]