Show that for a material with refractive index μ ≥ \(\sqrt2\),  light incident at any angle shall be guided along a length perpendicular to the incident face.

Hint: The refraction of light depends on the refractive index of the material.

Step 1: Find the angle of refraction at the first surface.

Any ray entering at an angle i shall be guided along AC if the angle ray makes with a face AC (ϕ) is greater than the critical angle as per the principle of total internal reflection.

So, ϕ+r=90°, therefore, sin ϕ = cos r

                                               
                                    sin ϕ1μ
                                    cos r1μ
or                                    1-cos2r1-1μ2
i.e.,                                       sin2r1-1μ2
Step 2: Find the angle of incidence.
Since,                                     sin i= μ sinr
                                              1μ2sin2 i1-1μ2  or   sin2 iμ2-1
When i=π2, we have the smallest angle ϕ.

Step 3: Find the refractive index of the material.
If that is greater than the critical angle, then all other angles of incidence shall be more than the critical angle.
Thus,                                 1μ2-1
or                                       μ22
                                               μ2
This is the required result.