Question 11.17:
(a) For what kinetic energy of a neutron will the associated de Broglie wavelength be
1.40 x 10-10 m?
(b) Also find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of (3/2) KT at 300K.
 

(a)
Hint: \(K=\frac{p^{2}}{2m}\)

Step 1: Find the momentum of a neutron.
According to De Broglie
           \(\lambda=\frac{h}{p}\\p=\frac{h}{\lambda}\)
Step 2: Find the kinetic energy of a neutron.
\(K=\frac{p^2}{2m}=\frac{h^2}{2m\lambda^2}\) 
=(6.63×1034)22×(1.40×1010)2×1.66×1027=6.75×1021J=6.75×10211.6×1019=4.219×102eV
Hence, the kinetic energy of the neutron is 6.75 x 10-21 J or 4.219 x 10-2 eV.

(b)
Hint: \(\lambda^{\prime}=\frac{h}{\sqrt{2 K m }}\)

Step 1: Find the average kinetic energy of the neutron.
The average kinetic energy of the neutron:
K=32kT=32×1.38×1023×300=6.21×1021J

Step 2: Find the wavelength of a neutron.
The relation for the de Broglie wavelength is given as λ=h2Km
λ=6.63×10342×6.21×1021×1.66×1027=1.46×1010m=0.146nm
Therefore, the de Broglie wavelength of the neutron is 0.146 nm.