13.23 In a periodic table the average atomic mass of magnesium is given as 24.312 u. The average value is based on their relative natural abundance on earth. The three isotopes and their masses are \({ }_{12}^{24} \mathrm{Mg}\) (23.98504u), \({ }_{12}^{25} \mathrm{Mg}\) (24.98584u), and \({ }_{12}^{26} \mathrm{Mg}\) (25.98259u). The natural abundance of \({ }_{12}^{24} \mathrm{Mg}\) is 78.99% by mass. Calculate the abundances of the other two isotopes.

Hint: Average atomic mass is given by the weightage average of masses of isotopes.
Step 1: Find the weightage average of masses of isotopes.
Mass of magnesium \({ }_{12}^{24} \mathrm{Mg}\) isotope m1= 23.98504 u
Mass of magnesium \({ }_{12}^{25} \mathrm{Mg}\) isotope m2= 24.98584 u
Mass of magnesium M1226g isotope, m3= 25.98259 u
Abundance of M1224g, n1=78.99%
Let the abundance of M1225g, n2=x%,
Therefore, the abundance of M1226g, n3=100-x-78.99%=[21.01-x]%
We have the relation for the average atomic mass as:
m=m1n1+m2n2+m3n3n1+n2+n3
24.312=23.98504×78.99+24.98584×.x+25.98259×(21.01-x)100
2431.2=1894.5783096+24.98584x+545.8942159-25.98259x
0.99675x=9.2725255
x9.3%
And 21.01-x=11.71%
Hence, the abundance of M1225g is 9.3% and that of   M1226g is 11.71%