Loading [MathJax]/jax/element/mml/optable/MathOperators.js

13.26 Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

22388Ra20982 Pb+146C22388Ra21986Rn+42He

Calculate the Q-values for these decays and determine that both are energetically allowed.

Hint: The Q-value is given by E=Δmc2​.
Step 1: Find the Q-value for first reaction.
For the emission of C146, the nuclear reaction:R22388aP20982b+C146
We know that:
Mass of R22388a, m1=223.01850 u
Mass of P20982b, m2=208.98107 u
Mass ofC146, m3=14.00324 u
Hence, the Q-value of the reaction is given as:
Q=(m1-m2-m3) c2=(223.01850-208.98107-14.00324)c2=(0.03419 c2) u
But 1 u = 931.5 MeV/c2

Hence, the Q-value of the nuclear reaction is 31.848 MeV. Since the value is positive, the reaction is energetically allowed.


Step 2: Find the Q-value for the second reaction.

For the emission of { }_{2}^{4} \mathrm{He}, the nuclear reaction is: { }_{88}^{223} \mathrm{Ra} \rightarrow{ }_{86}^{219} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}
We know that:
Mass of { }_{88}^{223} R a, m_{1}=223.01850~u
Mass of { }_{86}^{219} R n, m_{2}=219.00948~u
Mass of { }_{2}^{4} \mathrm{He}, m_{3}=4.00260~u
Q-value of this nuclear reaction is given as:
Q=(m1-m2-m3) c2=(223.01850-219.00948-4.00260)C2=(0.00642 c2)u==0.00642×931.5=5.98 MeV
Hence, the Q value of the second nuclear reaction is 5.98 MeV. Since the value is positive, the reaction is energetcally allowed.