15.4 Use the formula v=γPρto explain why the speed of sound in air

(a) is independent of pressure,

(b) increases with temperature,

(c) increases with humidity.


a The speed of the sound is given by:
v=γPρ                     ...i
where Density,  ρ=MassVolume=MV
M=Molecular weight of the gas
V=Volume of the gas
Hence,
v=γPVM                  ...ii
Now from the ideal gas equation for n=1-
PV = RT 
For constant temperature, PV = Constant
Since both M and γ are constants, v = Constant 
Hence, at a constant temperature, the speed of sound in a
 gaseous medium is independent of the change in the
 pressure of the gas. 
c
 v=γPρ                  ...i
For one mole of an ideal gas,
 PV = RT  
P =RTV                   ... ii
 Substituting equation ii in equation i,
v=γRT=v=γRTM        ...iv
Where, Mass, M = ρV = constant
 γ and R are also constants.
 So  vT.

Let  vm and vd be the speeds of sound in moist air and dry air respectively.

Let ρm and ρd be the densities of moist air and dry air respectively.

So,

v=γPρ
Hence, the speed of sound in moist air:
vm=γPρm                           ...i
And the speed of sound in dry air:
vd=γPρd                           ...ii
On dividing equations i and ii,
vmvd=γPρm×ρdγρ=ρdρm
However, the presence of water vapour reduces the density of air, i.e., ρd<ρm.
vm>vd