For the harmonic travelling wave, y=2cos2π10t-0.008x+3.5 where x and y are in cm and t is in second. What is the phase difference between the oscillatory motion at two points separated by a distance of:

1. 4m

2. 0.5m

3. λ2

4. 3λ4 (at a given instant of time)

5. What is the phase difference between the oscillation of a particle located at x=100cm, at t = T sec and t=5 sec?

Hint: Use the standard equation of motion.
Given, the wave equation;
                                 y=2cos2π10t-0.0080x+3.5
  =2cos20πt-0.016πx+7π
Now, the standard equation of a travelling wave can be written as:
                                 y=acosωt-kx+ϕ
On comparing with the above equation, we get,
                                                   a=2cm
ω=20π rad/s
k=0.016π
Step 1: Find the phase difference in each option.
1.
Path difference=4 m
Phase difference,
ϕ=2πλ×path difference                                   2πλ=k 
ϕ=0.016π×4×100
     =6.4π rad
2. 
ϕ=2πλ×0.5×100                      Path difference=0.5m
=0.016π×0.5×100
=0.8π rad
3. 
ϕ=2πλ×λ2=π rad
                                           Path difference=λ/2
4. 
ϕ=2πλ×3λ4=3π2 rad
Step 2: Find the phase difference of the particle at t = T sec and t = 5 sec.
5. 
T=2πω=2π20π=110s
                 At x=100cm,
                         t=T
                     ϕ1=20πT-0.016π100+7π
                        =20π110-1.6π+7π=2π-1.6π+7π                   ......(i)
Again, at x=100 cm, t = 5s
                             ϕ2=20π5-0.016π100+7π
   =100π-0.016×100π+7π  
   =100π-1.6π+7π                                        ....(ii)                                
 From Eqs. (i) and (ii), we get,
ϕ=phase difference =ϕ2-ϕ1
                                  =(100π-1.6π+7π)-(2π-1.6π+7π)
                                  =100π-2π=98π rad