14.4 Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):

(a) sin ωt – cos ωt

(b) sin3 ωt

(c) 3 cos (π/4 – 2ωt)

(d) cos ωt + cos 3ωt + cos 5ωt

(e) e-ω2t2

(f) 1+ωt+ω2t2

 


(a)
The given function is:

y=sinωtcosωty=2[12sinωt12cosωt]y=2[sinωt×cosπ4cosωt×sinπ4]y=2sin(ωtπ4)
This function represents SHM as it can be written in the form: 
y=Asinωt+ϕ
Its period is: 2πω

b
The given function is:
y=sin3ωt
y=123 sinωt-sin3ωt

The terms sinωt and sin3ωt individually represent simple harmonic motion (SHM).
However, the superposition of two SHM is periodic and but not simple harmonic.

(c)

The given function is:

y=3cosπ4-2ωt
y=3cos2ωt-π4
This function represents simple harmonic motion because it can 
be written in the form:
y=Acosωt-ϕ
Its period is: T= 2π2ω=πω

(d)
The given function is:

y=cosωt+cos3ωt+cos5ωt.

Each individual cosine function represents SHM. However, the superposition of three simple harmonic motions is periodic, but not simple harmonic.

(e)

The given function is:

y=e-ω2t2

It is an exponential function. Exponential functions do not repeat themselves. Therefore, it is a non-periodic motion.

The given function is:

y=1+ωt+ω2t2 

It is a non-periodic function as it does not repeat itself.