14.9 A spring having a spring constant 1200 N/m is mounted on a horizontal table as shown in Fig. 14.24. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Fig. 14.24

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.


Spring constant, k = 1200 N m-1
 Mass, m = 3 kg
 Displacement, A = 2.0 cm = 0.02 cm 
Frequency of oscillation ν, is given by the relation:
ν=1T=12πkm
where T is the time period
ν=12×3.1412003=3.18 Hz
Hence, the frequency of oscillations is 3.18 Hz. 
Maximum acceleration (a): 
a=ω2A
 where ω = Angular frequency=km
 A=maximum displacement
a=kmA=1200×0.023=8ms-2
Hence, the maximum acceleration of the mass is 8.0 m/s2 .
 Maximum velocity, vmax = =Akm=0.02×12003=0.4m/s
Hence, the maximum velocity of the mass is 0.4 m/s.