14.10 In Exercise 14.9, let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of the x-axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?


The functions have the same frequency and amplitude, but different initial phases.
The amplitude of the mass, A = 2.0 cm

Force constant of the spring, k=1200 N m-1 
Mass, m=3 kg
 Angular frequency of oscillation:
ω=km=1200 3=400=20 rad s-1
When the mass is at the mean position, initial phase is 0. 
Displacement, x=Asinωt=2sin20t
At the maximum stretched position, the mass is toward the extreme right. 
Hence, the initial phase is π2.
Displacement, x=Asinωt+π2=2sin20t+π2=2cos20t
At the maximum compressed position, the mass is toward the extreme left. 
Hence, the initial phase is 3π2.
Displacement, x=Asinωt+3π2=2sin20t+3π2=-2cos 20t
The functions have the same frequency 202πHz and amplitude (2 cm), but different initial phases 0,π2,3π2.