The displacement of a particle is represented by the equation \(y= 3 \cos \left(\frac{\pi}{4}-\omega t \right)\). The motion of the particle is:

1. simple harmonic with period \(\dfrac{2\pi}{\omega}\)
2. simple harmonic with period \(\dfrac{\pi}{\omega}\)
3. periodic but not simple harmonic
4. non-periodic

Hint: In SHM, the acceleration is directly proportional to the displacement.
 
Step 1: Find the velocity of the particle.
Given, \(y = 3 \cos (\frac{\pi}{4}-\omega t)\)
The velocity of the particle is given by; \(v=\frac{dy}{dt}\)
\(v= \frac{d}{dt}[3 \cos(\frac{\pi}{4}-\omega t)]\)
\(v=-3(-\omega)\sin(\frac{\pi}{4}-\omega t)= 3\omega \sin(\frac{\pi}{4}- \omega t)\)

Step 2: Find the acceleration of the particle.
Acceleration, \(a = \frac{dv}{dt} \)
\(a= \frac{d}{dt}[3\omega \sin(\frac{\pi}{4}-\omega t)]\)

\(a=3\omega \cos\left(\frac{\pi}{4} - \omega t\right) \cdot (-\omega)= -3\omega^2 \cos\left(\frac{\pi}{4} - \omega t\right)\)
\(\Rightarrow a=-\omega^2y\)
As acceleration, \(a\propto -y\)
Hence, due to the negative sign motion is SHM.

Step 3: Find the time period of the motion.
The time period of the particle in SHM is given by; \(T=\frac{2\pi}{\omega}\)
So, the motion is SHM with a period \(\frac{2\pi}{\omega}.\)
Hence, option (1) is the correct answer.