The figure shows the circular motion of a particle. The radius of the circle, the period, the sense of revolution, and the initial position are indicated in the figure. The simple harmonic motion of the x-x-projection of the radius vector of the rotating particle PP will be:

                                      

1. x(t)=Bsin(2πt30)x(t)=Bsin(2πt30) 

2. x(t)=Bcos(πt15)x(t)=Bcos(πt15) 

3. x(t)=Bsin(πt15+π2)x(t)=Bsin(πt15+π2) 

4. x(t)=Bcos(πt15+π2)x(t)=Bcos(πt15+π2) 

Hint: Use the trigonometric functions to find the equation.
 
Step 1: Find the horizontal projection of the radius vector.
Let the angular velocity of the particle executing circular motion be ωω and when it is at Q,Q, it makes an angle θθ as shown in the diagram.
                             
Now, we can write             
OR=OQcos(90𝜃)OR=OQcos(90θ)
OR=OQsin𝜃=OQsin𝜔tOR=OQsinθ=OQsinωt
OR=rsin𝜔t       [OQ=r,θ=ωt]OR=rsinωt       [OQ=r,θ=ωt]
 
Step 2: Find the equation of motion.
sinωt=xBsinωt=xB
x=rsin𝜔t=Bsin𝜔tx=rsinωt=Bsinωt         [r=B]
The angular frequency (ω) is related to the period by:
ω=2πT=2π30 rad/s
x=Bsin𝜔t
x=Bsin(2πt30)
Hence, option (1) is the correct answer.