A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius 1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in the string? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N?

Mass of the stone, m = 0.25 kg

Radius of the circle, r = 1.5 m

Number of revolution per second, n = 4060 = 2/3 rps


Angular velocity=ω = vr=2πn   ........1

The centripetal force for the stone is provided by the tension T, in the string, i.e.,

T = Fcentripetal
= mv2r = mrω2 = mr2πn2     From 1
= 0.25 × 1.5 ×2 × 3.14 × 232
= 6.57 N

Maximum tension in the string, Tmax= 200 N

Tmax = mv2maxr
 vmax = tmax × rm
= 200 × 1.50.25
= 1200 =34.64 m/s

Therefore, the maximum speed of the stone is 34.64 m/s.