A body of mass \(10 ~\text{Kg}\) is acted upon by two perpendicular forces, \(6 ~\text{N}\) and \(8 ~\text{N}\). The resultant acceleration of the body is:

(a) \(1~\text{ms}^{-2}\) at an angle of \(\text {tan}^{-1} \left(\dfrac{4}{3}\right ) \) w.r.t. \(6 ~\text{N}\) force.
(b) \(0.2~\text{ms}^{-2}\) at an angle of \(\text {tan}^{-1} \left(\dfrac{3}{4}\right ) \) w.r.t. \(8 ~\text{N}\) force.
(c) \(1~\text{ms}^{-2}\) at an angle of \(\text {tan}^{-1} \left(\dfrac{3}{4}\right ) \) w.r.t. \(8 ~\text{N}\) force.
(d) \(0.2~\text{ms}^{-2}\) at an angle of \(\text {tan}^{-1} \left(\dfrac{3}{4}\right ) \) w.r.t. \(6 ~\text{N}\) force.

Choose the correct option:
1. (a), (c)
2. (b), (c)
3. (c), (d)
4. (a), (b), (c)
(1) Hint: The resultant acceleration will be in the direction of the resultant force.
Step 1: Find the resultant force and the magnitude of the acceleration.
Consider the adjacent diagram
Given,     mass = m = 10 kg
 Resultant force =F=F12+F22=36+64                             =10N                           a=Fm=1010=1m/s2; along R
Step 2: Find the direction of the acceleration.
 Let θ1 be angle between R and F1tan θ1=86=43θ1=tan1 (4/3)w.r.t.F1=6N
Let θ2 beanglebetweenF and F2
tan θ2=68=34
θ2=tan1 (34)w.r.t.F2=8N