Q. 37 A racing car travels on a track (without banking) ABCDEFA. ABC is a circular arc of radius 2 R. CD and FA are straight paths of length R and DEF is a circular arc of radius R = 100 m. The coefficient of friction on the road is μ = 0.1. The maximum speed of the car is 50 m/s. Find the minimum time for completing one round.

Hint: Balance frictional force with centripetal force for the circular path.
Step 1: Find maximum speed of the car on the circular path.
Balancing frictional force with centripetal force
mv2r = f = μN = μmg
 
where N is normal reaction.
 v=μrg (where, r is radius of the circular track) 
Step 2: Find the time taken for path ABC.
For path ABC, path length =34(2π2R)=3πR=3π×100
         = 300πm     v1 = μ2Rg = 0.1×2×100×10         = 14.14m/s  t1 = 300π14.14 = 66.6s
Step 3: Find the time taken for path DEF.
For path DEF, path length =14(2πR)=π×1002=50π
v2 = μAg = 0.1×100×10 = 10m/s
t2 = 50π10 = 5πs = 15.7s
Step 4: Find time taken for path CD and FA.
For pathsCD and FA, path length =R+R=2R=200m
t3=20050=4.0s
Step 5: Find total time taken forcompleting one round.
 Total time for completing one round t=t1+t2+t3=66.6+15.7+4.0=86.3s.