NCERT Section

11.7 Allotropes of carbon

Carbon exhibits many allotropic forms; both crystalline as well as amorphous. Diamond and graphite are two well-known crystalline forms of carbon. In 1985, third form of carbon known as fullerenes was discovered by H.W.Kroto, E.Smalley and R.F.Curl. For this discovery they were awarded the Nobel Prize in 1996.

 

11.7.1 Diamond

 It has a crystalline lattice. In diamond each carbon atom undergoes sp3 hybridisation and linked to four other carbon atoms by using hybridised orbitals in tetrahedral fashion. The C–C bond length is 154 pm. The structure extends in space and produces a rigid three-dimensional network of carbon atoms. In this structure (Fig. 11.3) directional covalent bonds are present throughout the lattice.


Fig. 11.3 The structure of diamond

It is very difficult to break extended covalent bonding and, therefore, diamond is a hardest substance on the earth. It is used as an abrasive for sharpening hard tools, in making dyes and in the manufacture of tungsten filaments for electric light bulbs.

 

Problem 11.7

Diamond is covalent, yet it has high melting point. Why ? 

Solution

Diamond has a three-dimensional network involving strong C—C bonds, which are very difficult to break and, in turn has high melting point.

 

11.7.2 Graphite

 Graphite has layered structure (Fig.11.4). Layers are held by van der Waals forces and distance between two layers is 340 pm. Each layer is composed of planar hexagonal rings of carbon atoms. C—C bond length within the layer is 141.5 pm. Each carbon atom in hexagonal ring undergoes sp2 hybridisation and makes three sigma bonds with three neighbouring carbon atoms. Fourth electron forms a π bond. The electrons are delocalised over the whole sheet. Electrons are mobile and, therefore, graphite conducts electricity along the sheet. Graphite cleaves easily between the layers and, therefore, it is very soft and slippery. For this reason graphite is used as a dry lubricant in machines running at high temperature, where oil cannot be used as a lubricant.

Fig 11.4 The structure of graphite