If body having initial velocity zero is moving with uniform acceleration 8 m/sec2 , then the distance travelled by it in fifth second will be
(1) 36 metres
(2) 40 metres
(3) 100 metres
(4) Zero
An alpha particle enters a hollow tube of 4 m length with an initial speed of 1 km/s. It is accelerated in the tube and comes out of it with a speed of 9 km/s. The time for which it remains inside the tube is
(1)
(2)
(3)
(4)
Two cars A and B are travelling in the same direction with velocities v1 and v2 . When the car A is at a distance d behind car B, the driver of the car A applied the brake producing uniform retardation a. There will be no collision when-
1.
2.
3.
4.
A body of mass 10 kg is moving with a constant velocity of 10 m/s. When a constant force acts for 4 seconds on it, it moves with a velocity 2 m/sec in the opposite direction. The acceleration produced in it is
(1) 3 m/sec2
(2) –3 m/sec2
(3) 0.3 m/sec2
(4) –0.3 m/sec2
A body starts from rest from the origin with an acceleration of \(6~\text{m/s}^2\) along the \(x\text-\)axis and \(8~\text{m/s}^2\) along the \(y\text-\)axis. Its distance from the origin after \(4\) seconds will be:
1. \(56~\text{m}\)
2. \(64~\text{m}\)
3. \(80~\text{m}\)
4. \(128~\text{m}\)
A car moving with a velocity of 10 m/s can be stopped by the application of a constant force F in a distance of 20 m. If the velocity of the car is 30 m/s, it can be stopped by this force in
(1)
(2) 20 m
(3) 60 m
(4) 180 m
The displacement of a particle is given by \(y = a + bt + ct^{2} - dt^{4}\). The initial velocity and acceleration are, respectively:
1. | \(b, -4d\) | 2. | \(-b,2c\) |
3. | \(b, ~2c\) | 4. | \(2c, -2d\) |
A car moving with a speed of 40 km/h can be stopped by applying brakes for atleast 2 m. If the same car is moving with a speed of 80 km/h, what is the minimum stopping distance ?
(1) 8 m
(2) 2 m
(3) 4 m
(4) 6 m
An elevator car, whose floor to ceiling distance is equal to \(2.7~\text{m}\), starts ascending with constant acceleration of \(1.2~\text{ms}^{-2}\). \(2\) sec after the start, a bolt begins falling from the ceiling of the car. The free fall time of the bolt is:
1. \(\sqrt{0.54}~\text{s}\)
2. \(\sqrt{6}~\text{s}\)
3. \(0.7~\text{s}\)
4. \(1~\text{s}\)
The displacement is given by , the acceleration at is
(1)
(2)
(3)
(4)