Considering the \(3^{rd}\) orbit of \(\mathrm{He}^{+}\) (Helium ion), using the non-relativistic approach, the speed of the electron in this orbit will be: (Given: \(Z=2, K = 9\times 10^{9}\), and Planck's constant, \(h= 6.6\times10^{-34}\) J-s)
1. \(2.92\times 10^{8}\) m/s
2. \(1.46\times 10^{6}\) m/s
3. \(0.73\times 10^{8}\) m/s
4. \(3.0\times 10^{8}\) m/s

Subtopic:  Bohr's Model of Atom |
 76%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A monochromatic radiation of \(\lambda = 975~\mathring{A}\) excites a hydrogen atom in its ground state. The number of spectral lines in the resulting spectrum emitted will be:
1. \(3\)
2. \(2\)
3. \(6\)
4. \(10\)

Subtopic:  Spectral Series |
 56%
From NCERT
NEET - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Electron in hydrogen atom first jumps from third exicted state to second exicted state and then from second exicted to the first excited state. The ratio of the wavelengths λ1:λ2 emitted in the two cases is

(1) 7/5

(2) 27/20

(3) 27/5

(4) 20/7

Subtopic:  Bohr's Model of Atom |
 61%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquires as a result of photon emission will be:
(m is the mass of the hydrogen atom, \(R\) Rydberg constant and \(h\) Planck's constant)

1. \(\dfrac{24   h R}{25   m}\) 2. \(\dfrac{25   h R}{24 m}\)
3. \(\dfrac{25 m}{24 h R}\) 4. \(\dfrac{24 m}{25 h R}\)
Subtopic:  Bohr's Model of Atom |
 65%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The transition from the state n=3 to n=1

a hydrogen like atom results in ultraviolet

radiation. Infrared radiation will be obtained

in the transition from

(a) 21

(b) 32

(c) 42

(d) 43

Subtopic:  Spectral Series |
 73%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen-like ion. The atomic number Z of hydrogen-like ion is: 

(1) 4                                                 

(2) 1

(3) 2                                                 

(4) 3

Subtopic:  Spectral Series |
 69%
From NCERT
NEET - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron in the hydrogen atom jumps from nth excited state to the ground state. The wavelength so emitted illuminates a photosensitive material having work function 2.75 eV. If the stopping potential of the photo-electron is 10V, the value of n is 

(1) 3

(2) 4

(3) 5

(4) 2

Subtopic:  Bohr's Model of Atom |
From NCERT
NEET - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The energy of a hydrogen atom in the ground state is \(-13.6~\text{eV}\). What is the energy of a \(\mathrm{He}^+\) ion in the first excited state?
1. \(-13.6~\text{eV}\)
2. \(-27.2~\text{eV}\)
3. \(-54.4~\text{eV}\)
4. \(-6.8~\text{eV}\)

Subtopic:  Bohr's Model of Atom |
 72%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An alpha nucleus of energy 12mv2 bombards a heavy nuclear target of charge Ze. Then the distance of closest approach for the alpha nucleus will be proportional to

(a) 1Ze                              (b) v2

(c) 1m                               (d) 1v4

Subtopic:  Various Atomic Models |
 79%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The electron in the hydrogen atom jumps from excited state n=3 to its ground state n=1 and the photons thus emitted irradiate a photosensitive material. If the work function of the material is 5.1 eV, the stopping potential is estimated to be (the energy of the electron in the nth state En=-13.6n2eV)

1. 5.1 V                                               

2. 12.1 V

3. 17.2 V                                             

4. 7 V

Subtopic:  Bohr's Model of Atom |
 64%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch