A and B are two wires of same material. The radius of A is twice that of B. They are stretched by the same load. Then the stress on B is

(1) Equal to that on A

(2) Four times that on A

(3) Two times that on A               

(4) Half that on A

Subtopic:  Young's modulus |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the length of a wire is reduced to half, then it can hold the ......... load

(1) Half                                 

(2) Same

(3) Double                             

(4) One fourth

Subtopic:  Stress - Strain |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Why the spring is made up of steel in comparison of copper?

(1)   Copper is more costly than steel

(2)   Copper is more elastic than steel

(3)   Steel is more elastic than copper

(4)   None of the above

Subtopic:  Elasticity |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two wires of copper having length in the ratio of \(4:1\) and radii ratio of \(1:4\) are stretched by the same force. The ratio of longitudinal strain in the two will be:

1. \(1:16\) 2. \(16:1\)
3. \(1:64\) 4. \(64:1\)
Subtopic:  Hooke's Law |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The force constant of a wire does not depend on

(1) Nature of the material                     

(2) Radius of the wire

(3) Length of the wire                           

(4) None of the above

Subtopic:  Young's modulus |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The length of a wire is \(1.0~\text{m}\) and the area of cross-section is \(1.0\times 10^{-2}~\text{cm}^{2}.\) If the work done for an increase in length by \(0.2~\text{cm}\) is \(0.4~\text{J},\) then Young's modulus of the material of the wire is:
1. \(2.0\times 10^{10}~\text{N/m}^2\)
2. \(4\times 10^{10}~\text{N/m}^2\)
3. \(2.0\times 10^{11}~\text{N/m}^2\)
4. \(2.0\times 10^{13}~\text{N/m}^2\)
Subtopic:  Potential energy of wire |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The quality of the material which opposes the change in shape, volume or length is called

(1)   Intermolecular repulsion

(2)   Intermolecular behaviour

(3)   Viscosity

(4)   Elasticity

Subtopic:  Elasticity |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For silver, Young's modulus is 7.25×1010 N/m2 and Bulk modulus is 11×1010 N/m2. Its Poisson's ratio will be

1. -1                                     2. 0.5

3. 0.39                                  4. 0.25

Subtopic:  Poisson's Ratio |
 65%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A wire of length L and radius r is  rigidly fixed at one end. On stretching the other end of the wire with a force F, the increase in its length is l. If another wire of same material but of length 2L and radius 2r is stretched with a force of 2F, the increase in its length will be

(a) l                                       (b) 2l

(c) l2                                    (d) l4 

Subtopic:  Hooke's Law |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

In steel, the Young's modulus and the strain at the breaking point are 2×1011Nm-2 and 0.15 respectively. The stress at the breaking point for steel is therefore -

(1) 1.33×1011Nm-2           

(2) 1.33×1012Nm-2

(3) 7.5×10-13Nm-2           

(4) 3×1010Nm-2

Subtopic:  Young's modulus |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch