The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is \(20~\text{cm}\), the length of the open organ pipe is:
1. \(13.2~\text{cm}\)
2. \(8~\text{cm}\)
3. \(12.5~\text{cm}\)
4. \(16~\text{cm}\)
If the intensity is increased by a factor of 20; then how many decibels in the sound level increased?
1. 18
2. 13
3. 9
4. 7
A source of sound S emitting waves of frequency 100 Hz and an observer O are located at some distance from each other. The source is moving with a speed of 19.4 ms-1 at an angle of with the source-observer line as shown in the figure. The observer is at rest. The apparent frequency observed by the observer (velocity of sound in air 330 ms-1), is:
1. 100 Hz
2. 103 Hz
3. 106 Hz
4. 97 Hz
\(4.0~\text{gm}\) of gas occupies \(22.4~\text{litres}\) at NTP. The specific heat capacity of the gas at a constant volume is \(5.0~\text{JK}^{-1}\text{mol}^{-1}.\) If the speed of sound in the gas at NTP is \(952~\text{ms}^{-1},\) then the molar heat capacity at constant pressure will be:
(\(R=8.31~\text{JK}^{-1}\text{mol}^{-1}\))
1. | \(8.0~\text{JK}^{-1}\text{mol}^{-1}\) | 2. | \(7.5~\text{JK}^{-1}\text{mol}^{-1}\) |
3. | \(7.0~\text{JK}^{-1}\text{mol}^{-1}\) | 4. | \(8.5~\text{JK}^{-1}\text{mol}^{-1}\) |
The fundamental frequency of a closed organ pipe of a length \(20\) cm is equal to the second overtone of an organ pipe open at both ends. The length of the organ pipe open at both ends will be:
1. | \(80\) cm | 2. | \(100\) cm |
3. | \(120\) cm | 4. | \(140\) cm |
1. | Odd harmonics of the fundamental frequency will be generated. |
2. | All harmonics of the fundamental frequency will be generated. |
3. | Pressure change will be maximum at both ends. |
4. | The open end will be an antinode. |
A wave traveling in the +ve \(x\text-\)direction having maximum displacement along \(y\text-\)direction as \(1~\text{m}\), wavelength \(2\pi~\text{m}\) and frequency of \(\frac{1}{\pi}~\text{Hz}\), is represented by:
1. \(y=\sin (2 \pi x-2 \pi t)\)
2. \(y=\sin (10 \pi x-20 \pi t)\)
3. \(y=\sin (2 \pi x+2 \pi t)\)
4. \( y=\sin (x-2 t)\)
1. | increase by a factor of \(20\). |
2. | increase by a factor of \(10\). |
3. | decrease by a factor of \(20\). |
4. | decrease by a factor of \(10\). |
The driver of a car travelling at a speed of 30 m/s towards a hill sounds a horn of frequency 600 Hz. If the velocity of sound in air is 330 m/s, the frequency of reflected sound as heard by the driver is:
1. 550 Hz
2. 555.5 Hz
3. 720 Hz
4. 500 Hz