If \(A\) is the areal velocity of a planet of mass \(M,\) then its angular momentum is:
1. | \(\frac{M}{A}\) | 2. | \(2MA\) |
3. | \(A^2M\) | 4. | \(AM^2\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyThe figure shows the elliptical orbit of a planet \(m\) about the sun \({S}.\) The shaded area \(SCD\) is twice the shaded area \(SAB.\) If \(t_1\) is the time for the planet to move from \(C\) to \(D\) and \(t_2\) is the time to move from \(A\) to \(B,\) then:
1. | \(t_1>t_2\) | 2. | \(t_1=4t_2\) |
3. | \(t_1=2t_2\) | 4. | \(t_1=t_2\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyLet the speed of the planet at the perihelion \(P\) in figure shown below be \(v_{_P}\) and the Sun-planet distance \(\mathrm{SP}\) be \(r_{_P}.\) Relation between \((r_{_P},~v_{_P})\) to the corresponding quantities at the aphelion \((r_{_A},~v_{_A})\) is:
1. | \(v_{_P} r_{_P} =v_{_A} r_{_A}\) | 2. | \(v_{_A} r_{_P} =v_{_P} r_{_A}\) |
3. | \(v_{_A} v_{_P} = r_{_A}r_{_P}\) | 4. | none of these |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyWhich of the following quantities remain constant in a planetary motion (consider elliptical orbits) as seen from the sun?
1. | speed |
2. | angular speed |
3. | kinetic energy |
4. | angular momentum |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyTwo planets orbit a star in circular paths with radii \(R\) and \(4R,\) respectively. At a specific time, the two planets and the star are aligned in a straight line. If the orbital period of the planet closest to the star is \(T,\) what is the minimum time after which the star and the planets will again be aligned in a straight line?
1. | \((4)^2T\) | 2. | \((4)^{\frac13}T\) |
3. | \(2T\) | 4. | \(8T\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology1. | \(6 . 48 \times 10^{23} \text{ kg}\) | 2. | \(6 . 48 \times 10^{25} \text{ kg}\) |
3. | \(6 . 48 \times 10^{20} \text{ kg}\) | 4. | \(6 . 48 \times 10^{21} \text{ kg}\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology1. | \(4\) | 2. | \(2\) |
3. | \(\dfrac12\) | 4. | \(\dfrac14\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyThree equal masses of \(m\) kg each are fixed at the vertices of an equilateral triangle \(ABC.\) What is the force acting on a mass \(2m\) placed at the centroid \(G\) of the triangle?
(Take \(AG=BG=CG=1\) m.)
1. \(Gm^2(\hat{i}+\hat{j})\)
2. \(Gm^2(\hat{i}-\hat{j})\)
3. zero
4. \(2Gm^2(\hat{i}+\hat{j})\)
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyTwo spheres of masses \(m\) and \(M\) are situated in air and the gravitational force between them is \(F.\) If the space around the masses is filled with a liquid of specific density \(3,\) the gravitational force will become:
1. \(3F\)
2. \(F\)
3. \(F/3\)
4. \(F/9\)
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyIf a particle is projected vertically upward with a speed \(u,\) and rises to a maximum altitude \(h\) above the earth's surface then:
(\(g=\) acceleration due to gravity at the surface)
1. | \(h>\dfrac{u^2}{2g}\) |
2. | \(h=\dfrac{u^2}{2g}\) |
3. | \(h<\dfrac{u^2}{2g}\) |
4. | Any of the above may be true, depending on the earth's radius |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology