A sheet is placed on a horizontal surface in front of a strong magnetic pole. A force is needed to:
\(\mathrm A.\) hold the sheet there if it is magnetic.
\(\mathrm B.\) hold the sheet there if it is non-magnetic.
\(\mathrm C.\) move the sheet away from the pole with uniform velocity if it is conducting.
\(\mathrm D.\) move the sheet away from the pole with uniform velocity if it is both, non-conducting and non-polar.
Choose the correct statement\((\mathrm s )\) from the options given below:
1. \(\mathrm A\) and \(\mathrm C\) only
2. \(\mathrm A\), \(\mathrm C\) and \(\mathrm D\) only
3. \(\mathrm C\) only
4. \(\mathrm B\) and \(\mathrm D\) only
Subtopic:  Faraday's Law & Lenz Law |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology


An ideal inductor-resistor-battery circuit is switched on at \(t=0~\text{s}\). At time \(t\), the current is \(i=i_0\left(1-e^{\left(-\frac{t}{\tau}\right)}\right)\text{A}\), where \(i_0\) is the steady-state value. The time at which the current becomes \(0.5i_0\) is: [Given \(\text{ln}(2)= 0.693\)]
1. \(6.93 \times 10^3 ~\text{s}\)
2. \(6.93~\text{ms}\)
3. \(69.3~\text{s}\)
4. \(6.93~\text{s}\)
Subtopic:  LR circuit |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A conducting circular loop of face area \(2.5 \times 10^{-3}~\text{m}^2\) is placed perpendicular to a magnetic field which varies as \(B=0.5\sin(100 \pi t)~\text{T}\). The magnitude of induced emf at time \(t= 0~\text{s}\) is: 
1. \(0.125 \pi~ \text{mV}\) 2. \(125 \pi ~\text{mV}\)
3. \(125 \pi~\text{V}\) 4. \(12.5 \pi~\text{mV}\)
Subtopic:  Faraday's Law & Lenz Law |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A rod of length \(L\) rotates with a small uniform angular velocity \(\omega\) about its perpendicular bisector. A uniform magnetic field \(\mathrm B\) exists parallel to the axis of rotation. The potential difference between the centre of the rod and an end is:
1. \(\large\frac{B\omega L^2}{8}\)
2. \(\large\frac{B\omega L^2}{2}\)
3. \(\large\frac{B\omega L^2}{4}\)
4. zero
Subtopic:  Motional emf |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Let us consider two solenoids \(A\) and \(B,\) made from the same magnetic material of relative permeability \(\mu_{r}\) and equal area of cross-section. Length of \(A\) is twice that of \(B\) and the number of turns per unit length in \(A\) is half that of \(B.\) The ratio of self inductances of the two solenoids, \(L_A:L_B\) is:
1. \(1:2\)
2. \(2:1\)
3. \(8:1\)
4. \(1:8\)
Subtopic:  Self - Inductance |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The magnetic energy stored in an inductor of inductance \(4~\mu\text{H}\) carrying a current of \(2~\text{A}\) is:
1. \(8~\mu \text{J}\)
2. \(4~\mu \text{J}\)
3. \(4~\text{mJ}\)
4. \(8~\text{mJ}\)
Subtopic:  Self - Inductance |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

An emf is generated by an ac generator having \(100\) turn coil, of loop area \(1\) m2. The coil rotates at a speed of one revolution per second and placed in a uniform magnetic field of \(0.05\) T perpendicular to the axis of rotation of the coil. The maximum value of emf is:
1. \(3.14\) V
2. \(31.4\) V
3. \(62.8\) V
4. \(6.28\) V
Subtopic:  Motional emf |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A square loop of side \(1~\text m\) and resistance \(1~\Omega\) is placed in a magnetic field of \(0.5~\text T.\) If the plane of the loop is perpendicular to the direction of the magnetic field, the magnetic flux through the loop is:
1. \(0\) 2. \(2\) weber
3. \(0.5\) weber 4. \(1\) weber
Subtopic:  Magnetic Flux |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A big circular coil with \(1000\) turns and an average radius of \(10~\text{m}\) is rotating about its horizontal diameter at a rate of \(2~\text{rad s}^{-1}.\) The vertical component of the Earth's magnetic field at that location is \(2\times 10^{-5}~\text{T},\) and the electrical resistance of the coil is \(12.56~\Omega,\) the maximum induced current in the coil will be:
1. \(2~\text{A}\)
2. \(0.25~\text{A}\)
3. \(1.5~\text{A}\)
4. \(1~\text{A}\)
Subtopic:  Faraday's Law & Lenz Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The current in an inductor of self-inductance \(4~\text{H}\) changes from \(4~ \text{A}\) to \(2~\text{A}\) in \(1~ \text s\). The emf induced in the coil is:
1. \(-2~\text{V}\)
2. \(2~\text{V}\)
3. \(-4~\text{V}\)
4. \(8~\text{V}\)

Subtopic:  Self - Inductance |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology