In an electrical circuit \(R,\) \(L,\) \(C\) and an AC voltage source are all connected in series. When \(L\) is removed from the circuit, the phase difference between the voltage and the current in the circuit is \(\tan^{-1}\sqrt{3}\). If instead, \(C\) is removed from the circuit, the phase difference is again \(\tan^{-1}\sqrt{3}\). The power factor of the circuit is:
1. | \(\dfrac{1}{2} \) | 2. | \(\dfrac{1}{\sqrt{2}}\) |
3. | \(1 \) | 4. | \(\dfrac{\sqrt{3}}{2}\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology
An inductor of \(20~\text{mH}\), a capacitor of \(100~\mu \text{F}\), and a resistor of \(50~\Omega\) are connected in series across a source of emf, \(V=10 \sin (314 t)\). What is the power loss in this circuit?
1. \( 0.79 ~\text{W} \)
2. \( 0.43 ~\text{W} \)
3. \( 2.74 ~\text{W} \)
4. \( 1.13 ~\text{W}\)
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyAn AC source rated \(100~\text{V}\) (rms) supplies a current of \(10~\text{A}\) (rms) to a circuit. The average power delivered by the source:
(a) | must be \(1000~\text{W}\). |
(b) | may be \(1000~\text{W}\). |
(c) | may be greater than \(1000~\text{W}\). |
(d) | may be less than \(1000~\text{W}\). |
1. | (a) only |
2. | (b), (c) |
3. | (b), (d) |
4. | (a), (d) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology1. | resistive circuit | 2. | \({LC}\) circuit |
3. | inductive circuit | 4. | capacitive circuit |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyAn AC source given by \(V=V_m\sin(\omega t)\) is connected to a pure inductor \(L\) in a circuit and \(I_m\) is the peak value of the AC current. The instantaneous power supplied to the inductor is:
1. | \(\dfrac{V_mI_m}{2}\mathrm{sin}(2\omega t)\) | 2. | \(-\dfrac{V_mI_m}{2}\mathrm{sin}(2\omega t)\) |
3. | \({V_mI_m}\mathrm{sin}^{2}(\omega t)\) | 4. | \(-{V_mI_m}\mathrm{sin}^{2}(\omega t)\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology1. | \( \frac{\sqrt{3}}{4} \) | 2. | \( \frac{1}{2} \) |
3. | \( \frac{1}{8} \) | 4. | \( \frac{1}{4}\) |
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & BiologyFor a series \(\mathrm{LCR}\) circuit, the power loss at resonance is:
1. \(\frac{V^2}{\left[\omega L-\frac{1}{\omega C}\right]}\)
2. \( \mathrm{I}^2 \mathrm{~L} \omega \)
3. \(I^2 R\)
4. \( \frac{\mathrm{V}^2}{\mathrm{C} \omega} \)
Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot
NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology