In the electrochemical cell:
\(\mathrm{Z n \left|\right. Z n S O_{4} \left(\right. 0 . 01 M \left.\right) \left|\right. \left|\right. C u S O_{4} \left(\right. 1 . 0 M \left.\right) \left|\right. C u}, \)
the emf of this Daniel cell is E1. When the concentration of ZnSO4 is changed to 1.0 M and that of CuSO4 is changed to 0.01 M, the emf changes to E2. From the following, which one is the relationship between E1 and E2 ?
(Given, \(\frac{RT}{F}\) = 0.059)
1. \(\mathrm{E_{1} < E_{2}}\)
2. \(\mathrm{E_{1} > E_{2}}\)
3. \(\mathrm{E_{2} = 0 \neq E_{1}}\)
4. \(\mathrm{E_{1} = E_{2}}\)
The electrode potential for Mg electrode varies according to the equation
\(E_{Mg^{2+}/Mg}\ = \ E_{Mg^{2+}/Mg}^{o} \ - \ \frac{0.059}{2}log\frac{1}{[Mg^{2+}]}\)
The graph of EMg2+ / Mg vs log [Mg2+] among the following is:
1. | 2. | ||
3. | 4. |
Consider the following cell reaction
2Fe(s) + (g) + 4(aq) 2(aq) + 2(l)
E° = 1.67 V, At [] = 10 M, = 0.1 atm and pH = 3, the cell potential at 25 °C is :
1. 1.27 V
2. 1.77 V
3. 1.87 V
4. 1.57 V
\(Cu(s)|Cu^{+2}(10^{-3} \ M) \ || \ Ag^{+}(10^{-5} \ M)|Ag(s)\)
if \(E_{Cu^{+2}/Cu}^{o} \ = \ +0.34 \ V\), and \(E_{Ag^{+}/Ag}^{o} \ = \ +0.80 \ V\)
Ecell will be:
1. 0.46 V
2. \(0.46-\frac{RT}{2F}ln10^{7}\)
3. \(0.46+\frac{RT}{2F}ln10^{7}\)
4. \(0.46-\frac{RT}{2F}ln10^{2}\)
Mg(s) + 2Ag+(0.0001M) → Mg2+(0.130M) + 2Ag(s)
If EƟ(cell) for the above mentioned cell is 3.17 V, then E(cell) value will be-
(log 13=1.1)
1. 2.87 V
2. 3.08 V
3. 2.96 V
4. 2.68 V