A diffraction pattern is observed using a beam of red light. What will happen if the red light is replaced by the blue light?

1. No change takes place.
2. Diffraction bands become narrower.
3. Diffraction bands become broader.
4. Diffraction pattern disappears.

Subtopic:  Diffraction |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The first diffraction minima due to a single slit diffraction is at \(\theta = 30^{\circ}\) for a light of wavelength  \(5000~\mathring {A}.\)  The width of the slit is:
1. \(5\times 10^{-5}~\text{cm}\)
2. \(10\times 10^{-5}~\text{cm}\)
3. \(2.5\times 10^{-5}~\text{cm}\)
4. \(1.25\times 10^{-5}~\text{cm}\)

Subtopic:  Diffraction |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A parallel beam of monochromatic light of wavelength \(5000~\mathring{A}\) is incident normally on a single narrow slit of width \(0.001\) mm. The light is focused by a convex lens on a screen placed on the focal plane. The first minimum will be formed for the angle of diffraction equal to:
1. \(0^{\circ}\)
2. \(15^{\circ}\)
3. \(30^{\circ}\)
4. \(60^{\circ}\)

Subtopic:  Diffraction |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

In a diffraction pattern due to a single slit of width \(a\), the first minimum is observed at an angle of \(30^{\circ}\) when the light of wavelength \(5000~\mathring{A}\) is incident on the slit. The first secondary maximum is observed at an angle of:
1. \(\sin^{-1}\frac{2}{3}\)
2. \(\sin^{-1}\frac{1}{2}\)
3. \(\sin^{-1}\frac{3}{4}\)
4. \(\sin^{-1}\frac{1}{4}\)
Subtopic:  Diffraction |
 71%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A single slit of width \(0.1\) mm is illuminated by a parallel beam of light of wavelength \(6000~\mathring{A}\) and diffraction bands are observed on a screen \(0.5\) m from the slit. The distance of the third dark band from the central bright band is:
1. \(3~\text{mm}\)
2. \(9~\text{mm}\)
3. \(4.5~\text{mm}\)
4. \(1.5~\text{mm}\)

Subtopic:  Diffraction |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A parallel beam of moving electrons is incident normal on a narrow slit. A fluorescent screen is placed at a large distance from the slit. If the slit is further narrowed, then which of the following statements is correct?
1. The diffraction pattern is not observed on the screen in the case of electrons.
2. The angular width of the central maximum of the diffraction pattern will increase.
3. The angular width of the central maximum will decrease.
4. The angular width of the central maximum will remain the same.
Subtopic:  Diffraction |
 70%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A linear aperture whose width is \(0.02\) cm is placed immediately in front of a lens of focal length \(60\) cm. The aperture is illuminated normally by a parallel beam of wavelength \(5\times 10^{-5}\) cm. The distance of the first dark band of the diffraction pattern from the center of the screen is:
1. \(0.10~\text{cm}\)
2. \(0.25~\text{cm}\)
3. \(0.20~\text{cm}\)
4. \(0.15~\text{cm}\)

Subtopic:  Diffraction |
 71%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

At the first minimum adjacent to the central maximum of a single slit diffraction pattern, the phase difference between the Huygen’s wavelet from the edge of the slit and the wavelet from the midpoint of the slit is:
1. \(\frac{\pi}{4}~\text{radian}\)
2. \(\frac{\pi}{2}~\text{radian}\)
3. \(\pi~\text{radian}\)
4. \(\frac{\pi}{8}~\text{radian}\)
Subtopic:  Diffraction |
 64%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A beam of light of \(\lambda = 600~\text{nm}\) from a distant source falls on a single slit \(1~\text{mm}\) wide and the resulting diffraction pattern is observed on a screen \(2~\text{m}\) away. The distance between the first dark fringes on either side of the central bright fringe is:
1. \(1.2~\text{cm}\)
2. \(1.2~\text{mm}\)
3. \(2.4~\text{cm}\)
4. \(2.4~\text{mm}\)

Subtopic:  Diffraction |
 63%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A parallel beam of light of wavelength \(\lambda\) is incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the incident beam. At the second minimum of the diffraction pattern, the phase difference between the rays coming from the two edges of the slit is:
1. \(2 \pi\) 2. \(3 \pi\)
3. \(4 \pi\) 4. \( \pi \lambda\)
Subtopic:  Diffraction |
 56%
From NCERT
NEET - 2013
Please attempt this question first.
Hints
Please attempt this question first.