The sum of the numbers \(436.32,227.2,\) and \(0.301\) in the appropriate significant figures is:
1. | \( 663.821 \) | 2. | \( 664 \) |
3. | \( 663.8 \) | 4. | \(663.82\) |
The radius of a circle is stated as \(2.12\) cm. Its area should be written as:
1. | \(14\mathrm{~cm^2}\) | 2. | \(14.1\mathrm{~cm^2}\) |
3. | \(14.11\mathrm{~cm^2}\) | 4. | \(14.1124\mathrm{~cm^2}\) |
The mass and volume of a body are \(4.237~\text{grams}\) and \(2.5~\text{cm}^3\), respectively. The density of the material of the body in correct significant figures will be:
1. \(1.6048~\text{grams cm}^{-3}\)
2. \(1.69~\text{grams cm}^{-3}\)
3. \(1.7~\text{grams cm}^{-3}\)
4. \(1.695~\text{grams cm}^{-3}\)
The numbers \(2.745\) and \(2.735\) on rounding off to \(3\) significant figures will give respectively,
1. | \(2.75\) and \(2.74\) | 2. | \(2.74\) and \(2.73\) |
3. | \(2.75\) and \(2.73\) | 4. | \(2.74\) and \(2.74\) |
Each side of a cube is measured to be \(7.203~\text{m}\). What are the total surface area and the volume respectively of the cube to appropriate significant figures?
1. | \(373.7~\text{m}^2\) and \(311.3~\text{m}^3\) |
2. | \(311.3~\text{m}^2\) and \(373.7~\text{m}^3\) |
3. | \(311.2992~\text{m}^2\) and \(373.7147~\text{m}^3\) |
4. | \(373.7147~\mathrm{m^2}\) and \(311.2992~\text{m}^3\) |
In which of the following, the number of significant figures is different from that in the others?
1. | \(2.303~\text{kg}\) | 2. | \(12.23~\text{m}\) |
3. | \(0.002\times10^{5}~\text{m}\) | 4. | \(2.001\times10^{-3}~\text{kg}\) |
If \(97.52\) is divided by \(2.54\), the correct result in terms of significant figures is:
1. | \( 38.4 \) | 2. | \(38.3937 \) |
3. | \( 38.394 \) | 4. | \(38.39\) |
A thin wire has a length of \(21.7~\text{cm}\) and a radius of \(0.46~\text{mm}\). The volume of the wire to correct significant figures is:
1. | \( 0.15~ \text{cm}^3 \) | 2. | \( 0.1443~ \text{cm}^3 \) |
3. | \( 0.14~ \text{cm}^3 \) | 4. | \( 0.144 ~\text{cm}^3\) |