The sum of the numbers \(436.32,227.2,\) and \(0.301\) in the appropriate significant figures is:
1. | \( 663.821 \) | 2. | \( 664 \) |
3. | \( 663.8 \) | 4. | \(663.82\) |
The mass and volume of a body are \(4.237~\text{grams}\) and \(2.5~\text{cm}^3\), respectively. The density of the material of the body in correct significant figures will be:
1. \(1.6048~\text{grams cm}^{-3}\)
2. \(1.69~\text{grams cm}^{-3}\)
3. \(1.7~\text{grams cm}^{-3}\)
4. \(1.695~\text{grams cm}^{-3}\)
The numbers \(2.745\) and \(2.735\) on rounding off to \(3\) significant figures will give respectively,
1. | \(2.75\) and \(2.74\) | 2. | \(2.74\) and \(2.73\) |
3. | \(2.75\) and \(2.73\) | 4. | \(2.74\) and \(2.74\) |
The length and breadth of a rectangular sheet are \(16.2\) cm and \(10.1\) cm, respectively. The area of the sheet in appropriate significant figures and error would be, respectively,
1. | \(164\pm3~\text{cm}^2\) | 2. | \(163.62\pm2.6~\text{cm}^2\) |
3. | \(163.6\pm2.6~\text{cm}^2\) | 4. | \(163.62\pm3~\text{cm}^2\) |
Which of the following pairs of physical quantities does not have the same dimensional formula?
1. | work and torque |
2. | angular momentum and Planck's constant |
3. | tension and surface tension |
4. | impulse and linear momentum |
The measure of two quantities along with the precision of respective measuring instrument is . The value of AB will be:
1. (0.25 0.08) m
2. (0.25 0.5) m
3. (0.25 0.05) m
4. (0.25 0.135) m
You measure two quantities as A = 1.0 m 0.2 m, B = 2.0 m 0.2 m. We should report the correct value for as
1. 1.4 m 0.4 m
2. 1.41 m 0.15 m
3. 1.4 m 0.3 m
4. 1.4 m 0.2 m
Which of the following measurement is most precise?
1. \(5.00\) mm
2. \(5.00\) cm
3. \(5.00\) m
4. \(5.00\) km
The mean length of an object is \(5~\text{cm}\). Which of the following measurements is the most accurate?
1. | \(4.9~\text{cm}\) | 2. | \(4.805~\text{cm}\) |
3. | \(5.25~\text{cm}\) | 4. | \(5.4~\text{cm}\) |
Young's modulus of steel is \(1.9 \times 10^{11} ~\text{N/m}^2\). When expressed in CGS units of \(\text{dyne/cm}^2\), it will be equal to: \((1 \mathrm{~N}=10^5 \text { dyne, } 1~ \text{m}^2=10^4 ~\text{cm}^2)\)
1. \( 1.9 \times 10^{10} \)
2. \( 1.9 \times 10^{11} \)
3. \( 1.9 \times 10^{12} \)
4. \( 1.9 \times 10^9\)