An electron falls through a distance of \(1.5\) cm in a uniform electric field of magnitude \(2\times10^4\) N/C [figure (a)]. The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [figure (b)]. If \(t_e\) and \(t_p\) are the time of fall for electron and proton respectively, then:
1. \(t_e=t_p\)
2. \(t_e>t_p\)
3. \(t_e<t_p\)
4. none of these
1. \(E_A>E_B>E_C\)
2. \(E_A=E_B=E_C\)
3. \(E_A=E_C>E_B\)
4. \(E_A=E_C<E_B\)
1. | zero | 2. | \(4\dfrac{kq}{a^2}\) |
3. | \(2\dfrac{kq}{a^2}\) | 4. | \(2\sqrt2\dfrac{kq}{a^2}\) |