Huygens' wave theory allows us to know the:

1.  wavelength of the wave.
2.  velocity of the wave.
3.  amplitude of the wave.
4.  propagation of the wavefront.

Subtopic:  Huygens' Principle |
 84%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


When the light diverges from a point source, the shape of the wavefront is:
1. Parabolic.
2. Plane.
3. Spherical.
4. Elliptical.

Subtopic:  Huygens' Principle |
 84%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Huygen's principle for secondary wavelets may be used to:

1. explain Snell's law.
2. find the velocity of light in vacuum.
3. find a new position of a wavefront.
4. both (1) & (3) are correct.

Subtopic:  Huygens' Principle |
 71%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

By Huygen's wave theory of light, we cannot explain the phenomenon of:

1. Interference
2. Diffraction
3. Photoelectric effect
4. Polarisation

Subtopic:  Huygens' Principle |
 73%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Which of the following is not true?

1. The speed of light is dependent on the colour of the light.
2. The speed of violet light is less than the speed of the red light in glass.
3. The frequency of light never depends upon the property of the medium.
4. When the light diverges from a point source, the shape of the wavefront is plane.
Subtopic:  Huygens' Principle |
 74%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Light travels faster in the air than in glass. This is in accordance with:

1. the wave theory of light.
2. the corpuscular theory of light.
3. neither \((1)\) nor \((2)\)
4. both \((1)\) and \((2)\)
Subtopic:  Huygens' Principle |
 59%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

The plane wavefront is incident on a spherical mirror as shown. The reflected wavefront will be:

1. 2.
3. 4.
Subtopic:  Huygens' Principle |
 54%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

On superposition of two waves \(y_{1}=3\sin\left ( \omega t-kx \right )\) and \(y_{2}=4\sin\left ( \omega t-kx+\frac{\pi }{2} \right )\) at a point, the amplitude of the resulting wave will be:
1. \(7\)
2. \(5\)
3. \(\sqrt{7}\)
4. \(6.5\)

Subtopic:  Superposition Principle |
 86%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Two superposing waves are represented by the following equations: \(y_1=5 \sin 2 \pi(10{t}-0.1 {x}), {y}_2=10 \sin 2 \pi(10{t}-0.1 {x}).\) 
The ratio of intensities \(\dfrac{I_{max}}{I_{min}}\) will be:
1. \(1\)
2. \(9\)
3. \(4\)
4. \(16\)

Subtopic:  Superposition Principle |
 85%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Next Hint

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

If the ratio of amplitudes of two coherent sources producing an interference pattern is \(3:4\), the ratio of intensities at maxima and minima is:
1. \(3:4\)
2. \(9:16\)
3. \(49:1\)
4. \(25:7\)

Subtopic:  Superposition Principle |
 82%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.