In a spring pendulum, in place of mass, a liquid is used. If liquid leaks out continuously, then the time period of the spring pendulum:

1. Decreases continuously
2. Increases continuously
3. First increases and then decreases
4. First decreases and then increases

Subtopic:  Spring mass system |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For damped oscillations, the graph between energy and time will be:

1. 2.
3. 4.
Subtopic:  Damped Oscillations (OLD NCERT) |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Equation of a simple harmonic motion is given by \(x= a\sin \omega t\). For which value of \(x\), kinetic energy is equal to the potential energy?
1. \(x = \pm a\)
2. \(x = \pm \frac{a}{2}\)
3. \(x = \pm \frac{a}{\sqrt{2}}\)
4. \(x = \pm \frac{\sqrt{3}a}{2}\)
Subtopic:  Energy of SHM |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The displacement \( x\) of a particle varies with time \(t\) as \(x = A sin\left (\frac{2\pi t}{T} +\frac{\pi}{3} \right)\)The time taken by the particle to reach from \(x = \frac{A}{2} \) to \(x = -\frac{A}{2} \) will be:

1. \(\frac{T}{2}\) 2. \(\frac{T}{3}\)
3. \(\frac{T}{12}\) 4. \(\frac{T}{6}\)

Subtopic:  Phasor Diagram |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Force on a particle \(F\) varies with time \(t\) as shown in the given graph. The displacement \(x\) vs time \(t\) graph corresponding to the force-time graph will be:
          

1. 2.
3. 4.
Subtopic:  Linear SHM |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The amplitude of a damped oscillator becomes one-third in 10 minutes and 1n times of the original value in 30 minutes. The value of n is:

1.  81

2.  3

3.  9

4.  27

Subtopic:  Damped Oscillations (OLD NCERT) |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle executes simple harmonic oscillations under the effect of small damping. If the amplitude of oscillation becomes half of the initial value of 16 mm in five minutes, then what will be the amplitude after fifteen minutes?

1.  8 mm

2.  4 mm

3.  2 mm

4.  1 mm

Subtopic:  Damped Oscillations (OLD NCERT) |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle executes linear SHM between \(x=A.\) The time taken to go from \(0\) to \(A/2\) is \(T_1\) and to go from \(A/2\) to \(A\) is \(T_2\) then:
1. \(T_1<T_2\) 2. \(T_1>T_2\)
3. \(T_1=T_2\) 4. \(T_1= 2T_2\)
Subtopic:  Linear SHM |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two simple pendulums of length 1 m and 16 m are in the same phase at the mean position at any instant. If T is the time period of the smaller pendulum, then the minimum time after which they will again be in the same phase will be:

1.  3T2

2.  3T4

3.  2T3

4.  4T3

Subtopic:  Angular SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle executes SHM with a time period of \(4~\text{s}\). The time taken by the particle to go directly from its mean position to half of its amplitude will be:
1. \(\frac{1}{3}~\text{s}\)
2. \(1~\text{s}\)
3. \(\frac{1}{2}~\text{s}\)
4. \(2~\text{s}\)
Subtopic:  Linear SHM |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch