A sample of \(0.1\) g of water at \(100^{\circ}\mathrm{C}\) and normal pressure (\(1.013 \times10^5\) N m–2) requires \(54\) cal of heat energy to convert it into steam at \(100^{\circ}\mathrm{C}\). If the volume of the steam produced is \(167.1\) cc, then the change in internal energy of the sample will be:
1. \(104.3\) J
2. \(208.7\) J
3. \(42.2\) J
4. \(84.5\) J
The volume \((V)\) of a monatomic gas varies with its temperature \((T),\) as shown in the graph. The ratio of work done by the gas to the heat absorbed by it when it undergoes a change from state \(A\) to state \(B\) will be:
1. | \(\dfrac{2}{5}\) | 2. | \(\dfrac{2}{3}\) |
3. | \(\dfrac{1}{3}\) | 4. | \(\dfrac{2}{7}\) |
A thermodynamic system undergoes a cyclic process \(ABCDA\) as shown in Fig. The work done by the system in the cycle is:
1. \( P_0 V_0 \)
2. \( 2 P_0 V_0 \)
3. \( \frac{P_0 V_0}{2} \)
4. zero
1. | \(1000~\text{J}\) | 2. | zero |
3. | \(-2000~\text{J}\) | 4. | \(2000~\text{J}\) |
1. | \(275~\text{K}\) | 2. | \(325~\text{K}\) |
3. | \(250~\text{K}\) | 4. | \(380~\text{K}\) |
The pressure of a monoatomic gas increases linearly from \(4\times 10^5~\text{N/m}^2\) to \(8\times 10^5~\text{N/m}^2\) when its volume increases from \(0.2 ~\text m^3\) to \(0.5 ~\text m^3.\) The work done by the gas is:
1. \(2 . 8 \times10^{5}~\text J\)
2. \(1 . 8 \times10^{6}~\text J\)
3. \(1 . 8 \times10^{5}~\text J\)
4. \(1 . 8 \times10^{2}~\text J\)
In the \((P\text-V)\) diagram shown, the gas does \(5~\text J\) of work in the isothermal process \(ab\) and \(4~\text J\) in the adiabatic process \(bc.\) What will be the change in internal energy of the gas in the straight path from \(c\) to \(a?\)
1. \(9~\text J\)
2. \(1~\text J\)
3. \(4~\text J\)
4. \(5~\text J\)
\(ABCA\) is a cyclic process. Its \(P\text-V\) graph would be:
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
The degree of freedom per molecule for a gas on average is 8. If the gas performs 100 J of work when it expands under constant pressure, then the amount of heat absorbed by the gas is:
1. 500 J
2. 600 J
3. 20 J
4. 400 J
In the following figures, four curves A, B, C and D, are shown. The curves are:
1. | isothermal for A and D while adiabatic for B and C. |
2. | adiabatic for A and C while isothermal for B and D. |
3. | isothermal for A and B while adiabatic for C and D. |
4. | isothermal for A and C while adiabatic for B and D. |