1. | \(Bv^2t\) | 2. | \(2Bv^2t\) |
3. | \(\dfrac{\sqrt3}{2}Bv^2t\) | 4. | \(\dfrac{2}{\sqrt3}Bv^2t\) |
1. | \(\dfrac{\mu_0\pi r^2_1N_1N_2}{l_2}\) | 2. | \(\dfrac{\mu_0\pi r^2_1N_1N_2}{\sqrt{l_1l_2}}\) |
3. | \(\dfrac{\mu_0\pi r^2_1N_1N_2}{l_1}\) | 4. | \(\dfrac{\mu_0~\pi r_1r_2N_1N_2}{\sqrt{l_1}}\) |
1. | falls with uniform velocity. |
2. | \(g\). | accelerates down with acceleration less than
3. | \(g\). | accelerates down with acceleration equal to
4. | moves down and eventually comes to rest. |
1. | \(\dfrac{\mu_0A}{L}\cdot N\) | 2. | \(\dfrac{\mu_0A}{L}\cdot N^2\) |
3. | \(\dfrac{\mu_0L^3}{A}\cdot N\) | 4. | \(\dfrac{\mu_0L^3}{A}\cdot N^2\) |
1. | \(2~\text{A}\) | 2. | \(0.25~\text{A}\) |
3. | \(1.5~\text{A}\) | 4. | \(1~\text{A}\) |
The current in an inductor of self-inductance \(4~\text{H}\) changes from \(4~ \text{A}\) to \(2~\text{A}\) in \(1~ \text s\). The emf induced in the coil is:
1. \(-2~\text{V}\)
2. \(2~\text{V}\)
3. \(-4~\text{V}\)
4. \(8~\text{V}\)
1. | \(\left[M^2LT^{-2}A^{-2}\right]\) | 2. | \(\left[MLT^{-2}A^{2}\right]\) |
3. | \(\left[M^{2}L^{2}T^{-2}A^{2}\right]\) | 4. | \(\left[ML^{2}T^{-2}A^{-2}\right]\) |