Two stable isotopes of lithium \(^{6}_{3}\mathrm{Li}\) and \(^{7}_{3}\mathrm{Li}\) have respective abundances of \(7.5\%\) and \(92.5\%\). These isotopes have masses \(6.01512~\text{u}\) and \(7.01600~\text{u}\), respectively. The atomic mass of lithium is:
1. \(6.940934~\text{u}\)
2. \(6.897643~\text{u}\)
3. \(7.863052~\text{u}\)
4. \(7.167077~\text{u}\)

Subtopic:  Nuclear Binding Energy |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The three stable isotopes of neon: N1020e, N1021e, and N1022e have respective abundances of 90.51%, 0.27%, and 9.22%. The atomic masses of the three isotopes are 19.99 u, 20.99 u, and 21.99 u, respectively. The average atomic mass of neon is:

1. 20.1709 u
2. 21.7037 u
3. 20.1771 u
4. 21.0097 u

Subtopic:  Nuclear Binding Energy |
 59%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

What is the binding energy (in MeV) of a nitrogen nucleus N714?

Given, 
mp = 1.007825 u
mn = 1.008665 u
m(N714) = 14.003074 u

1. 102.7 MeV.
2. 100.7 MeV.
3. 104.7 MeV.
4. 108.7 MeV.

Subtopic:  Nuclear Binding Energy |
 56%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

advertisementadvertisement

A given coin has a mass of 3.0 g. How much nuclear energy would be required to separate all the neutrons and protons from each other? For simplicity assume that the coin is entirely made of C2963u atoms (of mass 62.92960 u).

Mass of proton, mp = 1.00783 u
Mass of neutron, mn = 1.00867 u


1. \(2.5296\times10^{12}\) MeV
2. \(1.581\times10^{25}\)  MeV
3. \(3.1223\times10^{20}\) MeV
4. \(931.02\times10^{19}\) MeV

Subtopic:  Nuclear Binding Energy |
 54%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

The approximately nuclear radii ratio of the gold isotope A79197u and the silver isotope A47107g is:

1. 1:1.23
2. 1:1.32
3. 1.01:1
4. 1.22:1

Subtopic:  Nuclear Energy |
 58%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

The radionuclide \(^{11}_{6}C\) decays according to \(^{11}_{6}C \rightarrow ~^{11}_{5}B+e^{+}+\nu\)\(\left(T_{\frac{1}{2}}=20.3~\text{min}\right)\)
The maximum energy of the emitted position is \(0.960~\text{MeV}\).
Given the mass values:
\(m\left(_{6}^{11}C\right) = 11.011434~\text{u}~\text{and}~ m\left(_{6}^{11}B\right) = 11.009305~\text{u},\)
The value of \(Q\)
 is:
1. \(0.313~\text{MeV}\)
2. \(0.962~\text{MeV}\)
3. \(0.414~\text{MeV}\)
4. \(0.132~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The nucleus Ne1023 decays by β emission. What is the maximum kinetic energy of the electrons emitted? Given that:

(N1023e) = 22.994466 u

(N1123a) = 22.989770 u.

1. 4.201 MeV
2. 3.791 MeV
3. 4.374 MeV
4. 3.851 MeV

Subtopic:  Nuclear Binding Energy |
 57%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

The fission properties of P94239u are very similar to those of U92235. The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure P94239u undergo fission?

1. \(2.5\times 10^{25}\)
 MeV
2. \(4.5\times 10^{25}\) MeV
3. \(2.5\times 10^{26}\) MeV
4. 
\(4.5\times 10^{26}\) MeV

Subtopic:  Nuclear Binding Energy |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

A 1000 MW fission reactor consumes half of its fuel in 5.00 yr. How much U92235 did it contain initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from the fission of, U92235 and that this nuclide is consumed only by the fission process.

1. 4386 kg.
2. 3076 kg.
3. 4772 kg.
4. 8799 kg.

Subtopic:  Nuclear Energy |
 55%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

advertisementadvertisement

How long can an electric lamp of \(100\) W be kept glowing by fusion of \(2.0\) kg of deuterium? Take the fusion reaction as:
\({}_{1}^{2}\mathrm{H}+{}_{1}^{2}\mathrm{H}\rightarrow {}_{2}^{3}\mathrm{He}+ n + 3.27~\text{MeV}\)
1. \(4.9 \times 10^{4} \text{ years }\) 2. \(2.8 \times 10^{4} \text { years }\)
3. \(3.0 \times 10^{4} \text { years }\) 4. \(3.9 \times 10^{4} \text { years }\)
Subtopic:  Nuclear Energy |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch