Instantaneous displacement current of \(2.0~\text A\) is set up in the space between two parallel plates of \(1~\mu \text{F}\) capacitor. The rate of change in potential difference across the capacitor is:
1. \(3\times 10^{6}~\text{V/s}\)
2. \(4\times 10^{6}~\text{V/s}\)
3. \(2\times 10^{6}~\text{V/s}\)
4. None of these
The S.I. unit of displacement current is:
1. Henry
2. Coulomb
3. Ampere
4. Farad
A variable frequency AC source is connected to a capacitor. Then on increasing the frequency:
1. | Both conduction current and displacement current will increase |
2. | Both conduction current and displacement current will decrease |
3. | Conduction current will increase and displacement current will decrease |
4. | Conduction current will decrease and displacement current will increase |
The charge of a parallel plate capacitor is varying as; \(q = q_{0} \sin\omega t\). The magnitude of displacement current through the capacitor is:
(the plate Area = \(A\), separation of plates = \(d\))
1. \(q_{0}\cos \left(\omega t \right)\)
2. \(q_{0} \omega \sin\omega t\)
3. \(q_{0} \omega \cos \omega t\)
4. \(\frac{q_{0} A \omega}{d} \cos \omega t\)
A larger parallel plate capacitor, whose plates have an area of \(1~\text{m}^2,\) separated from each other by \(1~\text{mm},\) is being charged at a rate of \(25.8~\text{V/s}.\) If the plates have a dielectric constant \(10,\) then the displacement current at this instant is:
1. \(25~\mu\text{A}\)
2. \(11~\mu\text{A}\)
3. \(2.2~\mu\text{A}\)
4. \(1.1~\mu\text{A}\)
The figure shows a parallel plate capacitor being charged by a battery. If \(X\) and \(Y\) are two closed curves then during charging, \(\oint \vec{B}.d\vec{l}\) is zero along the curve:
1. \(X\) only
2. \(Y\) only
3. Both \(X\) & \(Y\)
4. Neither \(X\) nor \(Y\)
1. | \(36.6\) m | 2. | \(40.5\) m |
3. | \(42.3\) m | 4. | \(50.9\) m |
Out of the following options which one can be used to produce a propagating electromagnetic wave?
1. | a stationary charge. |
2. | a chargeless particle. |
3. | an accelerating charge. |
4. | a charge moving at constant velocity. |