If the radius of a star is \(R\) and it acts as a black body, what would be the temperature of the star at which the rate of energy production is \(Q\)\(\left(\sigma~ \text{is Stefan-Boltzmann constant}\right)\)
1. \(\frac{Q}{4\pi R^2\sigma}\)
2. \(\left(\frac{Q}{4\pi R^2\sigma}\right )^{\frac{-1}{2}}\)
3. \(\left(\frac{4\pi R^2 Q}{\sigma}\right )^{\frac{1}{4}}\)
4. \(\left(\frac{Q}{4\pi R^2 \sigma}\right)^{\frac{1}{4}}\)

Subtopic:  Stefan-Boltzmann Law |
 83%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A spherical black body with a radius of 12 cm radiates 450-watt power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watts would be:

1. 225 2. 450
3. 1000 4. 1800
Subtopic:  Stefan-Boltzmann Law |
 75%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the sun’s surface radiates heat at \(6.3\times 10^{7}~\text{Wm}^{-2}\) then the temperature of the sun, assuming it to be a black body, will be:
\(\left(\sigma = 5.7\times 10^{-8}~\text{Wm}^{-2}\text{K}^{-4}\right)\)
1. \(5.8\times 10^{3}~\text{K}\)
2. \(8.5\times 10^{3}~\text{K}\)
3. \(3.5\times 10^{8}~\text{K}\)
4. \(5.3\times 10^{8}~\text{K}\)

Subtopic:  Stefan-Boltzmann Law |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement