The number of significant figures in \(0.0006032\) m2 is:
1. | \(4 \) | 2. | \(5\) |
3. | \(7\) | 4. | \(3\) |
List-I (Measured values) |
List-II (Significant figures) |
||
A. | \(0.001213\) | I. | \(2\) |
B. | \(2.1 \times 10^{16} \) | II. | \(3\) |
C. | \(3.70\) | III. | \(1\) |
D. | \(3000\) | IV. | \(4\) |
1. | A-III, B-II, C-I, D-IV |
2. | A-III, B-I, CII, D-IV |
3. | A-I, B-II, C-IV, D-III |
4. | A-IV, B-I, C-II, D-III |
1. | \(1\) | 2. | \(2\) |
3. | \(3\) | 4. | \(5\) |
1. | \(1\) | 2. | \(2\) |
3. | \(3\) | 4. | \(4\) |
The length, breadth, and thickness of a rectangular sheet of metal are \(4.234\) m, \(1.005\) m, and \(2.01\) cm respectively. The volume of the sheet to correct significant figures is:
1. \(0.00856\) m3
2. \(0.0856\) m3
3. \(0.00855\) m3
4. \(0.0855\) m3
The radius of a circle is stated as \(2.12\) cm. Its area should be written as:
1. | \(14\mathrm{~cm^2}\) | 2. | \(14.1\mathrm{~cm^2}\) |
3. | \(14.11\mathrm{~cm^2}\) | 4. | \(14.1124\mathrm{~cm^2}\) |
Subtract \(12.589-12.4\) and give the answer to the correct significant figure:
1. | \(0.2\) | 2. | \(0.189\) |
3. | \(0.188\) | 4. | \(0.199\) |