The position of a particle is given by; \(\vec r(t)=4t\hat i+2t^2\hat j+5\hat k,\) where \(t\) is in seconds and \(r\) in metres. Find the magnitude and direction of the velocity \(v(t)\), at \(t=1~\text{s},\) with respect to the \(x\text-\)axis.
1. \(4\sqrt2~\text{ms}^{-1},45^\circ\)
2. \(4\sqrt2~\text{ms}^{-1},60^\circ\)
3. \(3\sqrt2~\text{ms}^{-1},30^\circ\)
4. \(3\sqrt2~\text{ms}^{-1},45^\circ\)
Subtopic:  Speed & Velocity |
 81%
Level 1: 80%+
NEET - 2023
Hints

The position of a particle is given by; \(\vec{{r}}=[(3.0 {t} )\hat{{i}}-(2.0 {t}^2) \hat{{j}}+(4.0) \hat{{k}} ]~\text{m},\) where \(t\) is in seconds and the coefficients have the proper units for \(\vec r\) to be in meters. What is the magnitude and direction of the velocity of the particle at \(t=2.0~\text s?\)
1. \(7.56~ \text{m} \text{s}^{-1},-70^{\circ}\text{ with} ~{y} \text{-axis}. \)
2. \(7.56~ \text{m} \text{s}^{-1}, ~70^{\circ}\text{ with} ~{x} \text{-axis}. \)
3. \(8.54 ~\text{m} \text{s}^{-1},~70^{\circ}\text{ with} ~{y} \text{-axis}. \)
4. 
\(8.54 ~\text{m} \text{s}^{-1},-70^{\circ}\text{ with} ~{x} \text{-axis}. \)

Subtopic:  Speed & Velocity |
 60%
Level 2: 60%+
Hints
Links

The following are four different relations about displacement, velocity and acceleration for the motion of a particle in general.

(a) \(v_{a v}=1 / 2\left[v\left(t_1\right)+v\left(t_2\right)\right]\)
(b) \(v_{{av}}={r}\left({t}_2\right)-{r}\left({t}_1\right) / {t}_2-{t}_1\)
(c) \(r=1 / 2\left[v\left(t_2\right)-v\left(t_1\right)\right]\left({t}_2-{t}_1\right)\)
(d) \({a}_{{av}}=v\left({t}_2\right)-v\left({t}_1\right) / {t}_2-{t}_1\)


The incorrect options is/are:

1. (a) and (d) only 2. (a) and (c) only
3. (b) and (c) only 4. (a) and (b) only
Subtopic:  Speed & Velocity |
 59%
Level 3: 35%-60%
Hints

advertisementadvertisement

In a two-dimensional motion, instantaneous speed \(v_0\) is a positive constant. Then which of the following is necessarily true?

1. The average velocity is not zero at any time.
2. The average acceleration must always vanish.
3. The displacements in equal time intervals are equal.
4. Equal path lengths are traversed in equal intervals.
Subtopic:  Speed & Velocity |
 51%
Level 3: 35%-60%
Hints
Links

The position of a particle at time \(t\) is given by, \(x=3t^3\)\(y=2t^2+8t\), and \(z=6t-5\). The initial velocity of the particle is:

1. \(20\) unit 2. \(10\) unit
3. \(5\) unit 4. \(13\) unit
Subtopic:  Position & Displacement | Speed & Velocity | Projectile Motion |
 83%
Level 1: 80%+
Hints
Links

Consider a square carrom board \(ABCD\) of size \({3~ \text{ft}} \times 3~\text{ft}. \) A piece moves 'from' pocket \(A\) (close from a pocket), strikes side \(BC\) and then side \(AD\), and reaches pocket \(C\). If the piece is reflected perfectly from each side, then the ratio of the \(x,y\) components of velocity is given by \(\dfrac{v_x}{v_y}=\)

1. \(2\) 2. \(\dfrac{1}{2}\)
3. \(3\) 4. \(\dfrac{1}{3}\)
Subtopic:  Speed & Velocity |
 57%
Level 3: 35%-60%
Hints

advertisementadvertisement

The coordinates of a moving particle at any time \(t\) are given by \(x=\alpha t^3\) and \(y=\beta t^3.\) The speed of the particle at time \(t\) is given by:
1. \(\sqrt{\alpha^2+\beta^2}~\)
2. \(3t\sqrt{\alpha^2+\beta^2}~\)
3. \(3t^2\sqrt{\alpha^2+\beta^2}~\)
4. \(t^2\sqrt{\alpha^2+\beta^2}~\)

Subtopic:  Speed & Velocity |
 81%
Level 1: 80%+
Hints

The position of a particle is given by; \(\vec{r}=(3.0t\hat{i}-2.0t^{2}\hat{j}+4.0\hat{k})~\text{m},\) where \(t\) is in seconds and the coefficients have the proper units for \(r\) to be in meters. The magnitude and direction of \(\vec{v}(t)\) at \(t=1.0~\text s\) are:
1. \(4~\text{m/s},\) \(53^\circ\) with \(x\)-axis
2. \(4~\text{m/s},\) ​​​​​​​\(37^\circ\) with \(x\)-axis
3. \(5~\text{m/s},\) \(53^\circ\) with \(y\)-axis
4. \(5~\text{m/s},\) ​​​​​​​ \(53^\circ\) with \(x\)-axis
Subtopic:  Speed & Velocity |
 71%
Level 2: 60%+
Hints
Links