The escape velocity of a particle of mass \(m\) varies as:
1. | \(m^{2}\) | 2. | \(m\) |
3. | \(m^{0}\) | 4. | \(m^{-1}\) |
1. | \(\sqrt{\dfrac{1}{18}} v_e\) | 2. | \(\sqrt{\dfrac{1}{2}} v_e\) |
3. | \(\sqrt{\dfrac{1}{9}} v_e\) | 4. | \(\sqrt{\dfrac{1}{10}} v_e\) |
1. | \(\sqrt{200}\) km/s | 2. | \(\sqrt{250}\) km/s |
3. | \(\sqrt{300}\) km/s | 4. | \(\sqrt{363}\) km/s |
1. | \(11.2 ~\cos60^\circ\) km/s | 2. | \(11.2 ~\sin60^\circ\) km/s |
3. | \(11.2\) km/s | 4. | \(11.2 ~\tan60^\circ\) km/s |
1. | \(1:2\) | 2. | \(1:1\) |
3. | \(2:1\) | 4. | \(3:1\) |
1. | \(11.2\sqrt2~\text{km/s}\) | 2. | zero |
3. | \(11.2~\text{km/s}\) | 4. | \(11.2\sqrt3~\text{km/s}\) |
The escape velocity from the Earth's surface is \(v\). The escape velocity from the surface of another planet having a radius, four times that of Earth and the same mass density is:
1. | \(3v\) | 2. | \(4v\) |
3. | \(v\) | 4. | \(2v\) |
A particle of mass \(m\) is projected with a velocity, \(v=kv_{e} ~(k<1)\) from the surface of the earth. The maximum height, above the surface, reached by the particle is: (Where \(v_e=\) escape velocity, \(R=\) radius of the earth)
1. | \(\frac{R^{2}k}{1+k}\) | 2. | \(\frac{Rk^{2}}{1-k^{2}}\) |
3. | \(R\left ( \frac{k}{1-k} \right )^{2}\) | 4. | \(R\left ( \frac{k}{1+k} \right )^{2}\) |
1. | \(\dfrac{v}{3}\) | 2. | \(\dfrac{2v}{3}\) |
3. | \(\dfrac{3v}{4}\) | 4. | \(\dfrac{9v}{4}\) |