A. | (\(0\) to \(1~\text A\)) ranged ammeter. |
B. | (\(0\) to \(100~\text {mA}\)) ranged milli-ammeter. |
C. | (\(0\) to \(500~\mu\text A\)) ranged micro-ammeter. |
D. | (\(0\) to \(100~\text V\)) ranged voltmeter. |
1. | A > B > C > D | 2. | D > C > B > A |
3. | D > A > B > C | 4. | C > B > A > D |
A uniform wire of resistance \(50~\Omega\) \(\) is cut into \(5\) equal parts. These parts are now connected in parallel. The equivalent resistance of the combination is:
1. | \(2~\Omega\) \(\) | 2. | \(10~\Omega\) \(\) |
3. | \(250~\Omega\) \(\) | 4. | \(6250~\Omega\) |
1. | \(81\) \(\Omega\) | 2. | \(9\) \(\Omega\) |
3. | \(729\) \(\Omega\) | 4. | \(243\) \(\Omega\) |
A metal rod of length 10 cm and a rectangular cross-section of \(1~ \text {cm} \times 1/2~ \text {cm}\) is connected to a battery across opposite faces. The resistance will be:
1. | maximum when the battery is connected across\(1~ \text {cm} \times 1/2~ \text {cm}\) faces. |
2. | maximum when the battery is connected across \(10~ \text {cm} \times 1~ \text {cm}\) faces. |
3. | maximum when the battery is connected across \(10~ \text {cm} \times 1/2~ \text {cm}\) faces. |
4. | same irrespective of the three faces. |
Two solid conductors are made up of the same material and have the same length and the same resistance. One of them has a circular cross-section of area and the other one has a square cross-section of area . The ratio is:
1. | \(1.5\) | 2. | \(1\) |
3. | \(0.8\) | 4. | \(2\) |
A negligibly small current is passed through a wire of length \(15~\text{m}\) and uniform cross-section \(6.0\times10^{-7}\) m2, and its resistance is measured to be \(5.0~\Omega.\) What is the resistivity of the material at the temperature of the experiment?
1. | \(1\times 10^{-7}~\Omega\text{m}\) | 2. | \(2\times 10^{-7}~\Omega\text{m}\) |
3. | \(3\times 10^{-7}~\Omega\text{m}\) | 4. | \(1.6\times 10^{-7}~\Omega\text{m}\) |