The cell that will measure the standard electrode potential of a copper electrode is:
1. | \(1 \over 10\) bar) | H+(aq, 1M) || Cu2+(aq, 1M) | Cu Pt(s) | H2(g, |
2. | Pt(s) | H2(g, 1 bar) | H+(aq, 1M) || Cu2+ (aq, 2M) | Cu |
3. | Pt(s) | H2(g, 1 bar) | H+(aq, 1M)|| Cu2+ (aq, 1M) | Cu |
4. | \(1 \over 10\) bar) | H+(aq, \(1 \over 10\)M) || Cu2+(aq, 1M) | Cu Pt(s) | H2(g, |
For the given cell, Mg | Mg2+ || Cu2+ | Cu
a. Mg acts as cathode
b. Cu acts as cathode
c. The cell reaction is \(Mg + Cu^{2+} \rightarrow Mg^{2+} + Cu\)
d. Cu is the oxidising agent
The correct choice among the given is -
1. | (a, b) | 2. | (b, c) |
3. | (c, d) | 4. | (a, d) |
1. | 0.58 V | 2. | –0.30 V |
3. | 0.30 V | 4. | –0.58 V |
The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called:
1. Cell potential.
2. Cell emf.
3. Potential difference.
4. Cell voltage.
Two half cell reactions are given below:
\(\begin{aligned} &\mathrm{{Co}^{3+}+e^{-} \rightarrow {Co}^{2+}, {E}_{{Co}^{2+} / {Co}^{3+}}^{\circ}=-1.81 {~V}} \\ &2 \mathrm{{Al}^{3+}+6 e^{-} \rightarrow 2 {Al}({s}), {E}_{{Al} / {Al}^{3+}}^{\circ}=+1.66 {~V}} \end{aligned} \)
The standard EMF of a cell with feasible redox reaction will be:
1. | +7.09 V | 2. | +0.15 V |
3. | +3.47 V | 4. | –3.47 V |
The incorrect statement about an inert electrode in a cell is:
1. | It does not participate in the cell reaction. |
2. | It provides a surface either for oxidation or for the reduction reaction. |
3. | It provides a surface for the conduction of electrons. |
4. | It provides a surface for redox reaction. |
The most stable oxidized species among the following is:
\(E_{{\mathrm{Cr}_2 \mathrm{O}_7^2}/ \mathrm{Cr}^{3+}}^{o} =1.33 \mathrm{~V} ; E_{\mathrm{Cl}_2 / \mathrm{Cl}^{-}}^{o}=1.36 \mathrm{~V} \)
\( E_{\mathrm{MnO_{4}}^{-} / \mathrm{Mn}^{2+}}^{o}=1.51 \mathrm{~V} ; E_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{o}=-0.74 \mathrm{~V}\)
1. | Cr3+ | 2. | MnO4- |
3. | Cr2O72- | 4. | Mn2+ |