What is the value of linear velocity if \(\overrightarrow{\omega} = 3\hat{i} - 4\hat{j} + \hat{k}\) and \(\overrightarrow{r} = 5\hat{i} - 6\hat{j} + 6\hat{k}\):

1. \(6 \hat{i}+2 \hat{j}-3 \hat{k} \)           
2. \(-18 \hat{i}-13 \hat{j}+2 \hat{k} \)
3. \(4 \hat{i}-13 \hat{j}+6 \hat{k}\)
4. \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
Subtopic:  Circular Motion |
 85%
From NCERT
PMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The angle turned by a body undergoing circular motion depends on the time as given by the equation, \(\theta = \theta_{0} + \theta_{1} t + \theta_{2} t^{2}\). It can be deduced that the angular acceleration of the body is? 
1. \(\theta_1\)
2. \(\theta_2\)
3. \(2\theta_1\)
4. \(2\theta_2\)

Subtopic:  Circular Motion |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A car moves on a circular path such that its speed is given by \(v= Kt\), where \(K\) = constant and \(t\) is time. Also given: radius of the circular path is \(r\). The net acceleration of the car at time \(t\) will be:
1. \(\sqrt{K^{2} +\left(\frac{K^{2} t^{2}}{r}\right)^{2}}\)
2. \(2K\)
3. \(K\)
4. \(\sqrt{K^{2}   +   K^{2} t^{2}}\)

Subtopic:  Circular Motion |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A stone tied to the end of a \(1\) m long string is whirled in a horizontal circle at a constant speed. If the stone makes \(22\) revolutions in \(44\) seconds, what is the magnitude and direction of acceleration of the stone?

1. \(\pi^2 ~\text{ms}^{-2} \) and direction along the tangent to the circle.
2. \(\pi^2 ~\text{ms}^{-2} \)  and direction along the radius towards the centre.
3. \(\frac{\pi^2}{4}~\text{ms}^{-2} \) and direction along the radius towards the centre.
4. \(\pi^2~\text{ms}^{-2} \) and direction along the radius away from the centre.

Subtopic:  Circular Motion |
 76%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The position vector of a particle is \(\overrightarrow{r}= a \sin\omega t\hat i + a\cos \omega t\hat j\). The velocity of the particle is:

1.  parallel to the position vector.
2.  at \(60^{\circ}\) with position vector.
3.  parallel to the acceleration vector.
4.  perpendicular to the position vector.
Subtopic:  Circular Motion |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A car is moving at a speed of \(40\) m/s on a circular track of radius \(400\) m. This speed is increasing at the rate of \(3\) m/s2. The acceleration of the car is:
1. \(4\) m/s2
2. \(7\) m/s2
3. \(5\) m/s2
4. \(3\) m/s2

Subtopic:  Circular Motion |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Certain neutron stars are believed to be rotating at about \(1\) rev/s. If such a star has a radius of \(20\) km, the acceleration of an object on the equator of the star will be:

1. \(20 \times 10^8 ~\text{m/s}^2\) 2. \(8 \times 10^5 ~\text{m/s}^2\)
3. \(120 \times 10^5 ~\text{m/s}^2\) 4. \(4 \times 10^8 ~\text{m/s}^2\)
Subtopic:  Circular Motion |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle moves with constant speed \(v\) along a circular path of radius \(r\) and completes the circle in time \(T\). The acceleration of the particle is:
1. \(2\pi v / T\)
2. \(2\pi r / T\)
3. \(2\pi r^2 / T\)
4. \(2\pi v^2 / T\)

Subtopic:  Circular Motion |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch