If the radius of a planet is \(R\) and its density is \(\rho\), the escape velocity from its surface will be:
1. \(v_e\propto \rho R\)
2. \(v_e\propto \sqrt{\rho} R\)
3. \(v_e\propto \frac{\sqrt{\rho}}{R}\)
4. \(v_e\propto \frac{1}{\sqrt{\rho} R}\)

Subtopic:  Escape velocity |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The escape velocity for a rocket from the earth is \(11.2\) km/s. Its value on a planet where the acceleration due to gravity is double that on the earth and the diameter of the planet is twice that of the earth (in km/s) will be:

1. \(11.2\) 2. \(5.6\)
3. \(22.4\) 4. \(53.6\)
Subtopic:  Escape velocity |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The escape velocity for the Earth is taken \(v_d\). Then, the escape velocity for a planet whose radius is four times and the density is nine times that of the earth, is:

1. \(36v_d\) 2. \(12v_d\)
3. \(6v_d\) 4. \(20v_d\)
Subtopic:  Escape velocity |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

For a planet having mass equal to the mass of the earth but radius equal to one-fourth of the radius of the earth, its escape velocity will be:
1. \(11.2\) km/s 2. \(22.4\) km/s
3. \(5.6\) km/s 4. \(44.8\) km/s
Subtopic:  Escape velocity |
 75%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The earth is assumed to be a sphere of radius \(R\). A platform is arranged at a height \(R\) from the surface of the earth. The escape velocity of a body from this platform is \(fv_e\), where \(v_e\) is its escape velocity from the surface of the earth. The value of \(f\) is:
1. \(\sqrt{2}\)
2. \(\frac{1}{\sqrt{2}}\)
3. \(\frac{1}{3}\)
4. \(\frac{1}{2}\)

Subtopic:  Escape velocity |
 68%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A projectile is fired upwards from the surface of the earth with a velocity \(kv_e\) where \(v_e\) is the escape velocity and \(k<1\). If \(r\) is the maximum distance from the center of the earth to which it rises and \(R\) is the radius of the earth, then \(r\) equals:
1. \(\frac{R}{k^2}\)
2. \(\frac{R}{1-k^2}\)
3. \(\frac{2R}{1-k^2}\)
4. \(\frac{2R}{1+k^2}\)

Subtopic:  Escape velocity |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A body is projected vertically upwards from the surface of a planet of radius \(R\) with a velocity equal to half the escape velocity for that planet. The maximum height attained by the body is:
1. \(\frac{R}{3}\)
2. \(\frac{R}{2}\)
3. \(\frac{R}{4}\)
4. \(\frac{R}{5}\)

Subtopic:  Escape velocity |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The initial velocity \(v_i\) required to project a body vertically upwards from the surface of the earth to just reach a height of \(10R\), where \(R\) is the radius of the earth, described in terms of escape velocity \(v_e\) is:
1. \(\sqrt{\frac{10}{11}}v_e\)
2. \(\sqrt{\frac{11}{10}}v_e\)
3. \(\sqrt{\frac{20}{11}}v_e\)
4. \(\sqrt{\frac{11}{20}}v_e\)

Subtopic:  Escape velocity |
 62%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would Earth (mass \(= 5.98\times 10^{24}~\text{kg}\)) have to be compressed to be a black hole?
1. \(10^{-9}~\text{m}\)
2. \(10^{-6}~\text{m}\)
3. \(10^{-2}~\text{m}\)
4. \(100​~\text{m}\)

Subtopic:  Escape velocity |
 61%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A satellite is revolving in a circular orbit at a height \(h\) from the earth's surface (radius of earth \(R\); \(h<<R\)). The minimum increase in its orbital velocity required, so that the satellite could escape from the earth's gravitational field is close to: (Neglect the effect of the atmosphere.)
1. \(\sqrt{2gR}\)
2. \(\sqrt{gR}\)
3. \(\sqrt{\frac{gR}{2}}\)
4. \(\sqrt{gR}\left(\sqrt{2}-1\right)\)

Subtopic:  Escape velocity |
 57%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch